Rural & Farm Finance Policy Analysis Center

University of Missouri

Cost and Benefits of Lowering the Carbon Intensity of Corn Production

Dr. Alejandro Plastina Director, Rural and Farm Finance Policy Analysis Center (RaFF)

2024 Indiana CCA Conference Program December 17, 2024. Indianapolis, IN

Rural & Farm Finance Policy Analysis Center

https://ruralandfarmfinance.com/

University of Missouri

Missouri

Kansas Farm Income Outlook

Arkansas

Farm Income

Nebraska

Farm Income

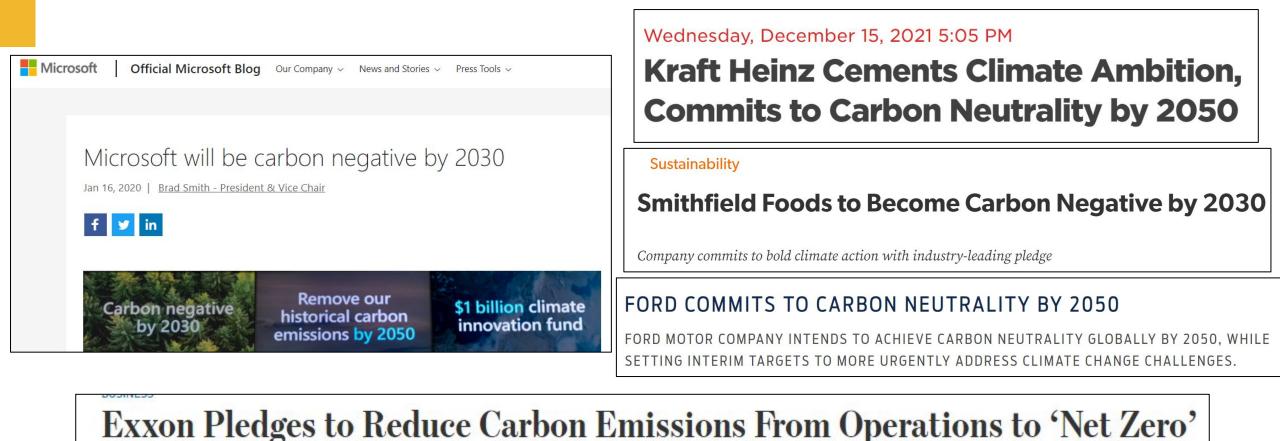
Outlook

updates in your inbox

SCAN ME

Potential Paths to Cleaner Corn

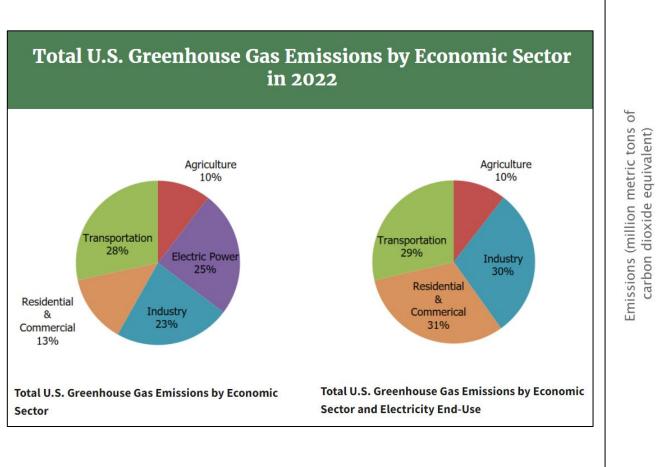
Dr. Plastina speaks about the 45Z Tax Credit, which rewards e producers for achieving a CI score below the qualifying thres how this could incentivize corn growers to consider climateagricultural practices

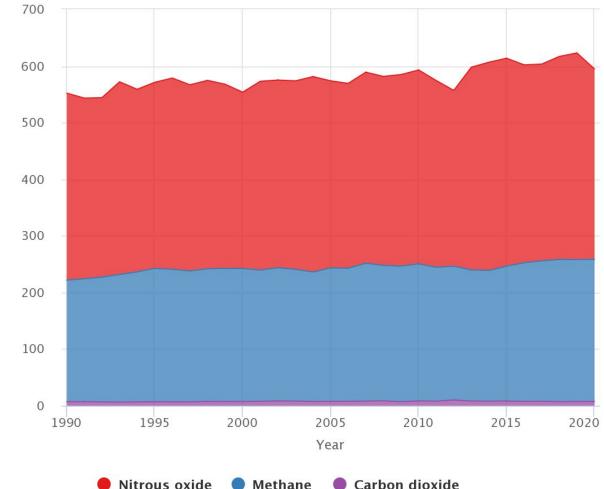

Learn more about how the 45Z Tax Credit could benefit corn https://ethanolproducer.com/articles/calculating-paths-to-

Follow RaFF on LinkedIn: https://www.linkedin.com/showcase/ruralfarmfinancecenter

Follow RaFF on X: @RaFFfinance

Business case for carbon markets




Oil giant said it would zero out emissions from assets it operates by 2050, but didn't commit to reducing emissions from use of its fuels

These pledges require adopting low GHG emission technologies in the long run. Meanwhile, carbon credits are used to reduce net emissions.

What role for ag in voluntary carbon

Ma Activities by Gas, 1990-2020

Source: U.S. EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

Sources of Revenue from Carbon

Whatstadecig	Carbon Offsets
Typical buyers	Large corporations
Typical goal	Reduce carbon footprint of the corporation
Farmers' role	Adopt conservation practice & reduce GHG emissions
Payments to farmers	\$ per Mt CO ₂ e
Additionality	Required

Example: Offsets vs. Insets

Achieve net zero carbon emissions by 2050, halving same by 2030.

Kraft Heinz can:

Kraft*Heinz*

- Buy carbon credits from the forestry sector to reduce its net GHG emissions
 carbon offsetting
- Buy low-carbon intensity tomatoes to produce a low-carbon intensity ketchup
 carbon insetting

How to Farm Carbon?

Some agricultural practices can **remove GHGs*** from the atmosphere **or avoid GHG emissions**:

- Reducing tillage intensity
- Planting cover crops
- Reducing fertilizer rates, switching from commercial fertilizer to compost
- Converting marginal cropland to grassland
- Planting trees
- Reducing stocking rates on pastures

*Greenhouse Gases (GHGs): carbon dioxide, nitrous oxide, methane, etc.

U.S. Agricultural Carbon Initiatives... ... connect carbon credit demand and supply

Plenty of Interest

Source: ESMC

Voluntary Ag Carbon Initiatives (Offsets & Insets)

• Payments per Output (\$ per ton of CO2e removed/avoided)

- 1. Carbon by Indigo 2. CIBO Carbon Credits 3. Corteva
- 4. ESMC's Eco-Harvest 5. Nori

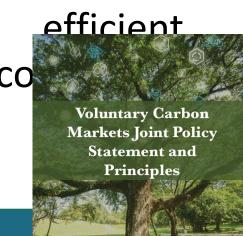
7. Soil and Water Outcomes Fund

6. Cargill's RegenConnect

8. TruTerra Carbon

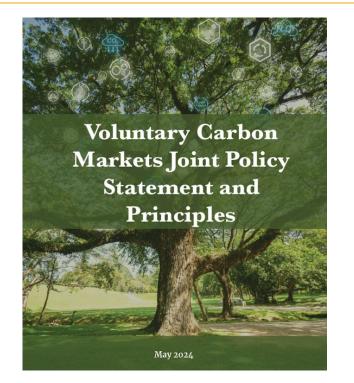
- Payments per Practice (\$ per acre, or \$ per N reduction)
 - 1. ADM's re:generations 2. Bayer Carbon 3. Indigo Ag:Market+ Source
 - 4. PepsiCo-PCM 5. TrueTerra N Mgmt Incentive 6. TruTerra Finan. Assist.
- Practice- and Outcome-based payments
 - 1. Agoro Carbon Alliance 2. Locus Ag CarbonNow
 - 3. CIBO Carbon Bridge 4. Nutrien's Sustainable N Outcomes

Ag
Carbon
Initiatives


Characteristic	Indigo C ¹	CIBO CC ²	Corteva	ESMC EH ³	Nori	Cargill RC ⁴	SWOF ⁵	Truterra CP ⁶	ADM R ⁷	Bayer C ⁸	Indigo MS ⁹	PepsiCo- PCM	Truterra NMI ¹⁰	Truterra FI ¹¹	Agoro C ¹²	CarbonNow	CIBO CB ¹³	Nutrien SNO ¹⁴
Payment scheme												8						
Output-based	Y	Y	Y	Y	Y	Y	Y	Y							Y	Y	Y	Y
Practice-based	['								Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Contract length																		
Individual contract (in years)	5	10	5	5	10	1	1	1	1	5	1	1	1	1	10	4	10	1
Possible renewals (in # of contracts)	2			3		U	U		U	3	U	U	U	U	3			9
MMRV	['		[]	[]											~			
Years of hist. field mgmt. data	3-5		3-5	3	10	4	2-3	U		4		3	3	U	3	5		3
Soil samples	Y			Y			Y			Y					Y	Y	Y	Y
Remote sensing	<u> </u>			<u> </u>		Y	Y		Y	Y							Y	
Satellite imagery	Y								Y									
Carbon measurement																		
Climate Action Reserve	Y		Y												3			Y
Verra VM0042	<u> </u>	Y													Y	Y	Y	
DNDC				Y														
COMET-Farm					Y		Y											
Unspecified								Y		Y			Y	Y				
Carbon registry	C	V	C		W			U		W			U	U	V	V	V	С
Carbon credit use																		
Offsetting	Y	Y	Y		Y			Y		Y			Y	Y	Y	Y	Y	Y
Insetting				Y		Y	Y	Y	Y		Y	Y	Y	Y			Y	
Test protocols (PCSA)									Y					Y				
Stacking of USDA payments	Y	Y	Y	Y	Y	Y	Y	U	Y*	Y		Y	U	U		Y	Y	U
Look-back payment	Y				Y				Y	Y	Y**							
Permanence assurance mechanism	Y				Y					Y					Y	Y		

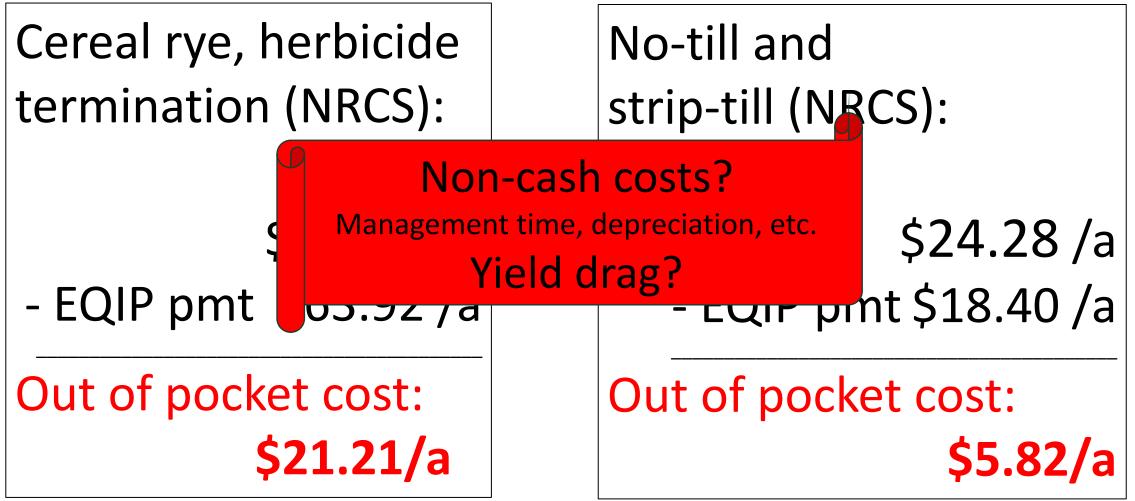
Methods to Quantify Carbon Credits	Carbon Initiatives
 COMET Farm, <u>https://comet-farm.com/</u> 	 Soil and Water Outcomes Fund
 Soil Metrics Greenhouse Gas Inventory Tool (GGIT), <u>https://soilmetrics.eco/technology/</u> (based on COMET Farm) 	Indigo AgCorteva Carbon
 Operational Tillage Information System (OpTIS), <u>https://www.ctic.org/OpTIS</u> 	 Cargill's RegenConnect[™]
 Denitrification-Decomposition (DNDC) Model, <u>https://ctic.org/DNDC_Information</u> 	 ESMC's Eco-Harvest Cargill's RegenConnect[™]
 Verra's VM0042, <u>https://verra.org/methodologies/vm0042-methodology-for-improved-agricultural-land-management-v1-0/</u> 	 Agoro Carbon Alliance CarbonNow CIBO Carbon Credits
 SALUS (system approach for land use sustainability) <u>https://www.cibotechnologies.com/salus-model/</u> 	CIBO Carbon Credits

USDA, Dept. of the Treasury, Dept. of Energy Guidelines


We encourage the U.S. private sector and other stakeholders in the carbon credit value chain to responsibly participate in Voluntary Carbon Markets, consistent with the principles below. These principles recognize the need for:

- credit integrity (i.e., "supply integrity");
- credible credit use (i.e., "demand integrity");
- •and market-level integrity, including facilitating market participation and lowering transaction

Traits of "High-Integrity" Carbon Credits


- a. Additional
- b. Real and Quantifiable
- c. Permanence
- d. Unique
- d. Robust baselines
- e. Validation and verification

GHG removal/avoidance cannot be assessed by buyers/users

Need for Strong Measuring, Monitoring, Reporting, and
Verification (MMRV) Systems

What's the cost of cover crops and no-till in Indiana?

https://www.nrcs.usda.gov/getting-assistance/payment-schedules#I-M

How large does the Carbon Payment need to be?

Cereal rye, herbicide termination (NRCS):

\$85.23 /a - EQIP pmt \$63.92 /a

Out of pocket cost: \$21.21/a

Example 1. Assume:

- •Farmer willing to invest \$5/a to improve soil health in the long run
- •Cereal Rye reduces yields by 2 bu/a
- •Corn price \$4.10/bu
- Cost Calculation:

\$21.21 - \$5 + 2 x \$4.10 = \$ 24.41

Lowest carbon payment to break even: \$24.41 /a

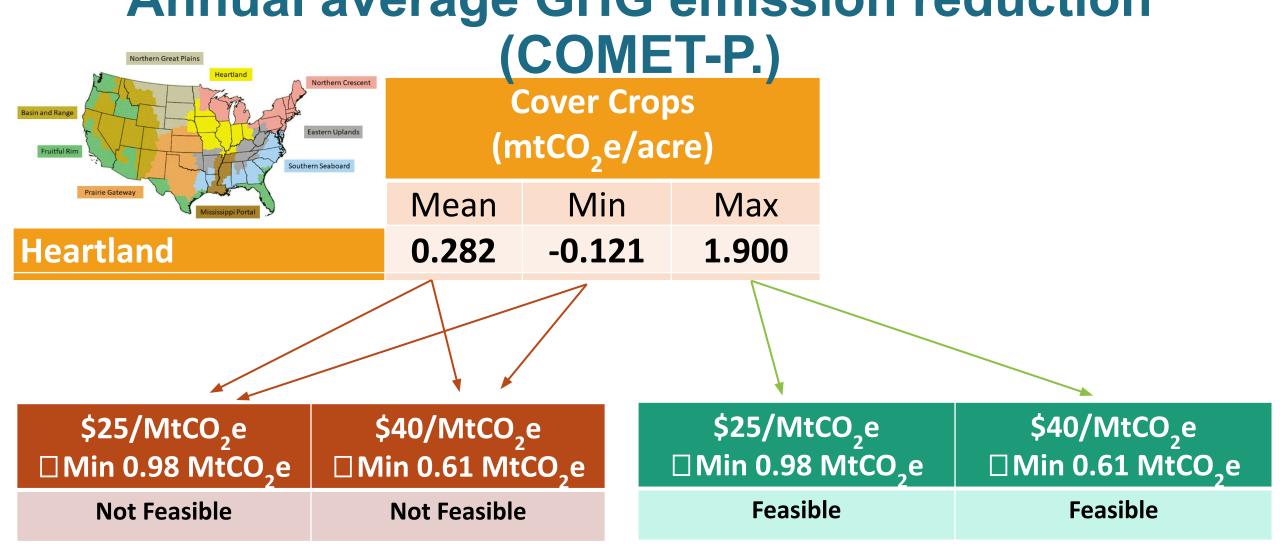
How much are Voluntary Carbon Initiatives paying? •Payments per Practice:

\$5 - \$15 per acre \Box Insufficient < \$ 24.41 per acre

•Payments per Output:

\$25 - \$40 per MtCO₂e

How much Carbon must by sequestered to break-even?
\$24.41 per acre / \$25 per MtCO₂e = 0.98 MtCO₂e per acre
\$24.41 per acre / \$40 per MtCO₂e = 0.61 MtCO₂e per acre


Northern Great Plains Heartland Northern Crescent

Basin and Range Fruitful Rim Southern Seaboard	(mtCO ₂ e/acre)						
Prairie Gateway Mississippi Portal	Mean	Min	Max				
Heartland	0.282	-0.121	1.900				
Northern Crescent	0.089	-0.089	0.778				
Northern Great Plains	0.047	-0.388	0.353				
Prairie Gateway	0.146	-0.408	1.285				
Eastern Uplands	0.353	-0.111	1.925				
Southern Seaboard	0.297	-0.099	1.925				
Fruitful Rim	0.188	-0.998	1.680				
Basin and Range	0.027	-0.998	0.788				
Mississippi Portal	0.615	-0.153	1.982				
U.S. Total	0.230	-0.998	1.979				

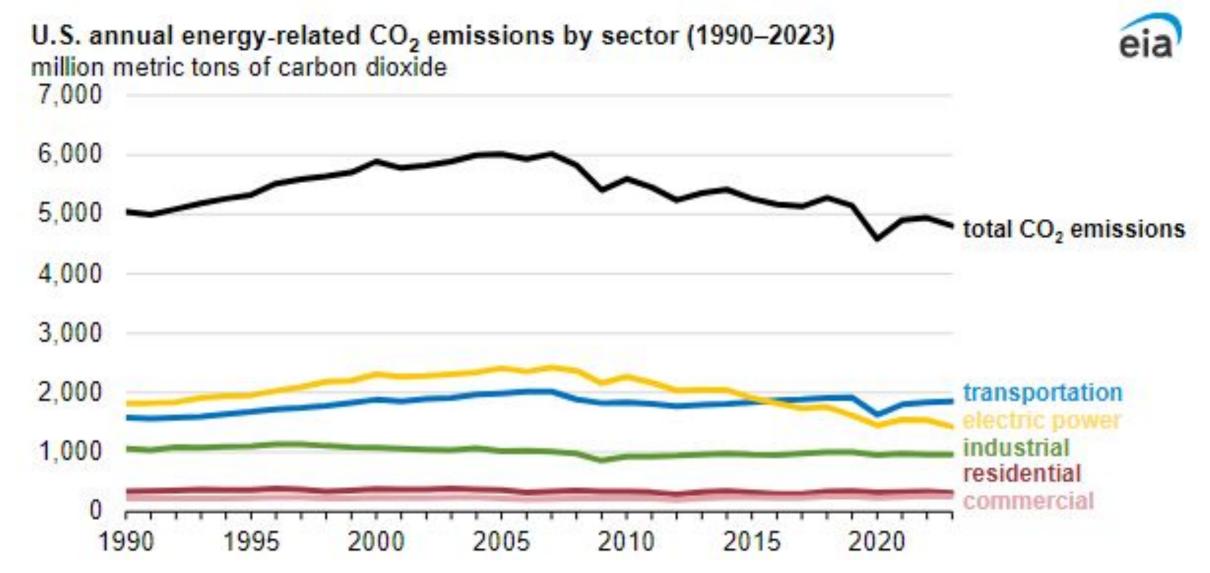
The net effect of cover cropping on GHGs is measured in metric tons of Carbon Dioxide Equivalent (CO_2e) units per acre.

The net effect is measured by comparing GHG emissions without cover crops and GHG emissions with cover crops

All GHGs are expressed in CO_2e units according to their relative global warming potential (gwp). Ex.: $CO_2=1$; N₂O=298; CH4=28 gwp units over 100 years.



Heartland region (yellow): In counties with high sequestration potential, carbon payments may be sufficient when carbon price = \$25 per MtCO₂e Min O.61 MtCO2e I Not feasible to break-even


Is Carbon Farming Profitable in Your Farm?

- DECISION TOOL: Ag Decision Maker File A1-78
- •66 practices for working croplands
- Payments: per-practice & per-output
- •Stacked cost-share payments
- By county for the 50 states
- •Net GHG emission reduction estimates from COMET-Planner

Clean Fuel Production Credit: 45Z Federal Tax Credit (2025-2027)

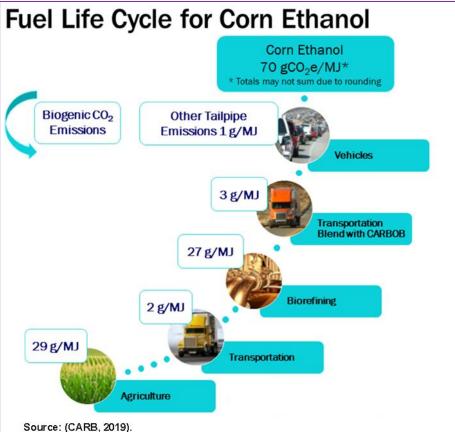
Lower GHG emissions from the electricity sector drove down total US emissions. The next policy goal is to reduce transportation emissions.

45Z Federal Tax Credit to Fuel Refineries (<u>not farmers</u>)

Tax Credit per gallon of Clean Fuel sold = Pmt. Rate × EF

 $EF = [1 - (kgCO_2 e per mmBTU / 50 kgCO_2 e per mmBTU)]$

Payment Rate	Base Rate	Premium Rate ^
Non-Sustainable Aviation Fuel (Non-SAF)	\$0.20	\$1.00
Sustainable Aviation Fuel (SAF)	\$0.35	\$1.35

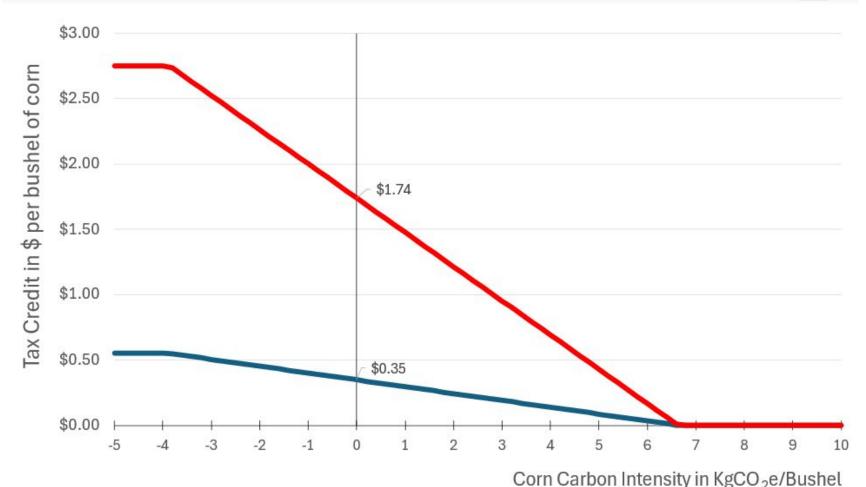

^Wage and apprenticeship requirements are met by fuel refinery.

Example: Non-SAF, base rate, 25 kg CO₂e/mmBTU

Tax Credit per gallon of Clean Fuel sold = \$0.20 × [1-(25/50)] = \$0.10

45Z Federal Tax Credit to Fuel Refineries (<u>not farmers</u>)

- Rules and models for the 45Z tax credit under development.
- •Examples based on current GREET model, similar to:


California GREET (Greenhouse Gases, Regulated Emissions, and Energy Use)

Agriculture: 41% of Corn Ethanol Emissions

Highest possible price premium for low Cl corn, \$/bu

Assuming:

- 100% pass-through to farmers
- Non-SAF
- Engineering process adds 18.4 kgCO₂e/mmBTU per gallon
- 2.75 gallons of ethanol per bushel of corn
- 233.85 mmBTU per bushel of corn

-TC per bushel of corn @ base rate -TC per bushel of corn @ bonus rate

Carbon Intensity Score (CIS) Calculator for Corn

Goals:

- •Calculate the average CIS of corn under current farming practices,
- •Calculate the expected change in CIS under new farming practices,
- Project the Federal Tax Credit 45Z that ethanol plants would obtain from using the corn supplied by the farmer as feedstock
- Project the potential extra-revenue for the farmer

22 states in the GREET model, results by county

Example for Marion County, Indiana

Assumptions:

- •80 acres, no cover crops, no manure use, conventional tillage
- •Corn yield is 185 bushels per acre
- •Nitrogen fertilizer: 1 lb N per bushel of corn
- Practice changes: add cover crops, switch to reduced tillage
- •Ethanol plant meets labor requirements
 Pmt. Rate \$1/gallon

Carbon Intensity Score Calculator

Ag Decision Maker -- Iowa State University Extension and Outreach

Enter your input values in shaded cells.

1. Select the cell below and choose a state and a county from the dropdown menu

State County	Indiana Marion	
	64 AP	
2. Farming Practices		
Corn Acres		80
Current farmi	ng practices	
Cover crop use	No cover crop	
Manure use	No manure	
Tillage practice	Conventional tillage	
Your fertilizer use	185 Ibs of N/acre	
Your yield	185 bushel/acre	

[^]Decreases must be entered with a negative sign in front of the number. Example: A 10 unit decrease should be entered as "-10".

https://www.extension.iastate.edu/agdm/crops/html/a1-80.html

3. Your Carbon Intensity (CI) Score, based on R&D GREET Model (2023)*

Current farming practices						
CI Score from corn 6,880 gCO2e/bushel						
CI Score from soil	456 gCO2c/bushel					
Current Total CI Score	7,336 gCO2e/bushel					

Note: gCO2e/bushel stands for grams of carbon dioxide equivale

Equivalent: using energy units instead of bushels:

Current farming practices						
CI Score from corn	31.07 gCO2e/MJ					
CI Score from soli	2.06 gCO2c/M.L					
Current Total CI Score	33.13 gCO2e/MJ					

Note: gCO2e/MJ stands for grams of carbon dioxide equivalent emissions per megajoule of energy in ethanol fuel.

These calculations assume one bushel of corn yields 2.75 gallons of ethanol, and one gallon of ethanol contains 80.5324 MJ of energy. You can modify these assumptions in the Details tab.

*Wang M et al. (2023) Summary of expansions and updates in R&D GREET 2023. Available at: https://greet.anl.gov/publications.

*The CI Score improves when the New Total CI Score is lower than the Current Total CI Score. Negative values for Improvement in CI Score indicate a worsening of the Total CI Score, and occur when the New Total CI Score is higher than the Current Total CI Score.

https://www.extension.iastate.edu/agdm/crops/html/a1-80.html

4. Highest Projected 45z Tax Credit (TC) for Ethanol Plants from Your Corn Production:

Basic Tax Credit

Bonus Tax Credit*

- \$ 0.20 per gCO2e/MJ below Industry Average CI Score
- \$ 1.00 per gCO2e/MJ below Industry Average CI Score

*Bonus Tax Credits can be claimed by ethanol plants that comply with additional wages and apprenticeship requirements.

Current farming practices & Bonus Tax Credit									
-	per gallon								
	per bushel								
-	per acre								
	per farm								
	-								

New farming practices	8	Bonus	Tax Credit
Highest projected TC value	\$	0.27	per gallon
Highest projected TC value	\$	0.73	per bushel
Highest projected TC value	\$	134.02	per acre
Highest projected TC value	\$	10,721	per farm

What % of the TC will be passed-through to farmers?

. Maximum amount you could receive for your corn from the ethanol plant, by share of Tax Credit passed-through:

Share of tax credits passed-through to you

https://www.extension.iastate.edu/agdm/crops/html/a1-80.html

Examples for Non-SAF in Marion County, IN

Scenarios	∆yield bu/acre*	Yield bu/acre	ΔCl gCO ₂ e/bu	Cl gCO ₂ e/bu	Lost Revenue^ \$/acre	Cl Revenue (base; bonus) \$/acre	Pass Through Required to Offset Lost Revenue ⁺ (base; bonus)
Baseline: CT		185		7,336	\$0.00		-
СС	-2	183	-3,683	3,653	\$8.20	\$26.8 <mark>; \$134.02</mark>	31,6
М	-5	180	-7,887	-551	\$20.50	\$66.05; \$330.26	31; 6
RT	0	185	-456	6,880	\$0.00	\$0; \$0	Ins.; Ins.
NT	-8	177	-1,039	6,297	\$32.80	\$1.37; \$6.86	Ins.; Ins.
CC, M	-7	178	-9,959	-2,623	\$28.70	\$84.66; \$423.32	34; 7
CC, RT	-2	183	-4,922	2,414	\$8.20	\$38.69; \$193.45	21; 4
CC, NT	-10	175	-6,206	1,130	\$41.00	\$48.79; \$243.95	84; 17
CC, M, RT	-7	178	-10,718	-3,382	\$28.70	\$91.74; \$458.71	31; 6
CC, M, NT	-15	170	-11,986	-4,650	\$61.50	\$98.93; \$494.66	62; 12

CT – Conventional Till, CC – Cover Crops, M – Manure, RT – Reduced Till, NT – No Till * 1 lb N/bu ^Corn price \$4.10/bu Ins. – Insufficient

Examples for Non-SAF in Marion County, IN

Scenarios	∆yield bu/acre*	Yield bu/acre	ΔCl gCO ₂ e/bu	Cl gCO ₂ e/bu	Lost Revenue^ \$/acre	Cl Revenue (base; bonus) \$/acre	Pass Through Required to Offset Lost Revenue ⁺ (base; bonus)
Baseline: CT		185		7,336	\$0.00		-
СС	-2	183	-3,683	3,653	\$8.20	\$26.8; \$134.02	31; 6
М	-5	180	-7,887	-551	\$20.50	\$66.05; \$330.26	31; 6
RT	0	185	-456	6,880	\$0.00	\$0; \$0	Ins.; Ins.
NT	-8	177	-1,039	6,297	\$32.80	\$1.37; \$6.86	Ins.; Ins.
CC, M	-7	178	-9,959	-2,623	\$28.70	\$84.66; \$423.32	34; 7
CC, RT	-2	183	-4,922	2,414	\$8.20	\$38.69; \$193.45	21; 4
CC, NT	-10	175	-6,206	1,130	\$41.00	\$48.79; \$243.95	84; 17
CC, M, RT	-7	178	-10,718	-3,382	\$28.70	\$91.74; \$458.71	31; 6
CC, M, NT	-15	170	-11,986	-4,650	\$61.50	\$98.93; \$494.66	62; 12

CT - Conventional Till, CC - Cover Crops, M - Manure, RT - Reduced Till, NT - No Till* 1 lb N/bu^Corn price \$4.10/buIns. - Insufficient

Besides lost revenue from yield drag, can all costs be covered?

Cereal rye, herbicide termination (NRCS):

\$85.23 /a - EQIP pmt \$63.92 /a

Out of pocket cost: \$21.21/a

No-till and strip-till (NRCS):

\$24.28 /a - EQIP pmt \$18.40 /a

\$5.82/a

Out of pocket cost:

Non-cash costs?

https://www.nrcs.usda.gov/getting-assistance/payment-schedules#I-M

Concluding Remarks

- •Conservation practices provide multiple environmental benefits, but not all farms find those practice profitable.
- Stacking payments from cost-share programs (EQIP, CSP, etc.) and voluntary carbon initiatives brings some farmers closer to break-even and might help make a profit.
- •45Z Tax Credits paid to Fuel Refineries. Crop CI score is locationand practice-specific. Local price premiums for low-CI feedstocks might be insufficient to entice some farmers.

Actionable recommendations

- Run a quick & free Cl assessment: AgDM File A1-78
- Explore Programs and Incentives
- Consult with Crop Advisors, Legal Advisors
- Stay updated on the topic
- Evaluate individual costs and benefits & ask plenty of questions before agreeing to change practices.

Free Resources

1) Carbon Intensity Score Calculator

https://www.extension.iastate.edu/agdm/crops/html/a1-80.html

2) How to Grow and Sell Carbon Credits in US Agriculture https://www.extension.iastate.edu/agdm/crops/pdf/a1-76.pdf

3) What's in Store for Voluntary Agricultural Carbon Markets? https://www.card.iastate.edu/ag_policy_review/article/?a=136

- 4) Net Returns to Carbon Farming
- https://go.iastate.edu/B46UXX

5) Carbon Farming: Stacking Payments from Private Initiatives and Federal Programs https://www.extension.iastate.edu/agdm/crops/pdf/a1-40.pdf

Thank you for your time!

Dr. Alejandro Plastina

Rural and Farm Finance Policy Analysis Center (RaFF) University of Missouri 130 Mumford Hall Columbia, MO 65211 (573) 882 – 3861

Follow RaFF on X **@RaFFfinance** Follow Alejandro on X **@a_plastina**

Follow RaFF on LinkedIn: <u>https://www.linkedin.com/showcase/ruralfarmfinancecenter</u>

Find policy briefs and data releases from RaFF <u>https://ruralandfarmfinance.com/publications/</u>

Receive the latest RaFF updates in your inbox

Rural & Farm Finance Policy Analysis Center University of Missouri