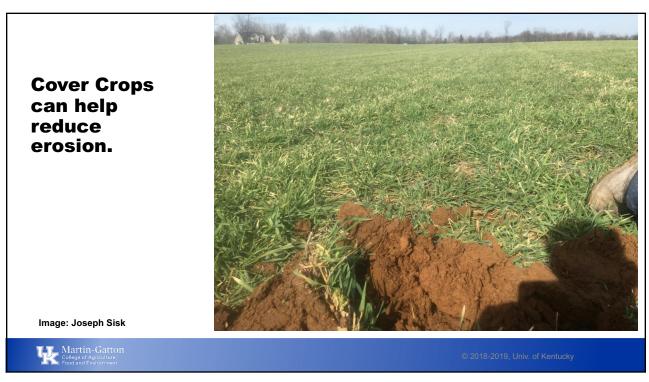
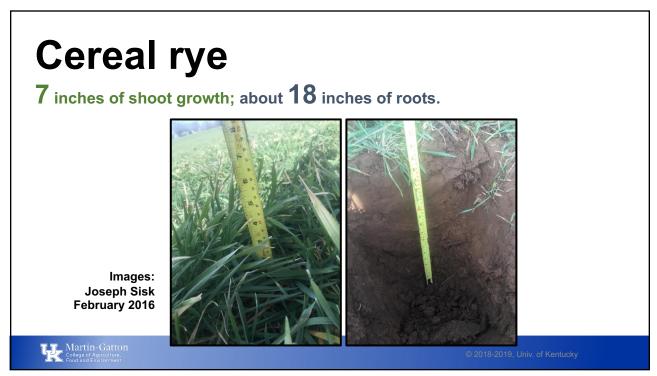


1

3


7



9

11

Rye Cover Crop

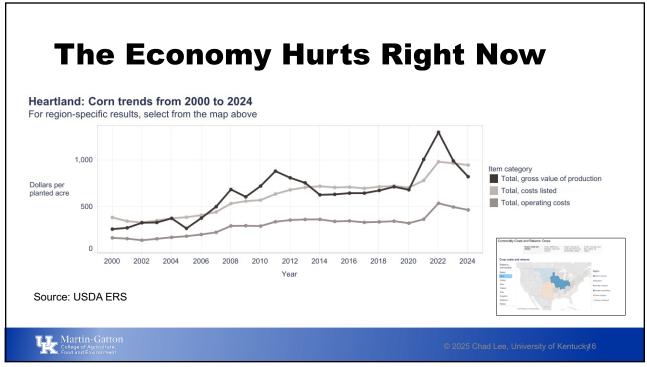
4 inches of shoot growth; at least 29 inches of roots

March 2019, Bluegrass Maury Silt Loam

© 2018-2019, Univ. of Kentucky

13

Why a Cover Crop?


- 1. Prevent Erosion
- 2. Prevent Erosion
- 3. Prevent Erosion

Capture nutrients
Cycle nutrients
Build soil structure
Hold carbon

© 2025 Chad Lee, Univ. of Kentucky

15

Cover Crop Termination

- Terminate 2 to 5 weeks before planting corn
- Glyphosate, higher rates
- Full adjuvants on the label
- Avoid UAN as a carrier
- Avoid tank mixes that could antagonize glyphosate activity

2025 Chad Lee, Univ. of Kentucky

17

19

21

Cover Crops

- •Will compete with corn...even after the cover crop is dead.
- •Will hold soils together...even after the cover crop is dead.

© 2025 Chad Lee, Univ. of Kentucky

23

25

27

29

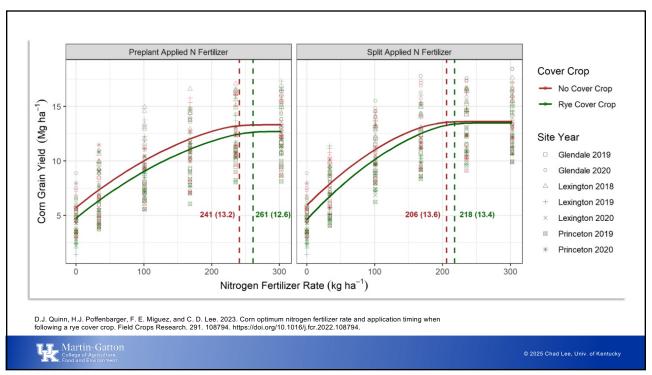
31

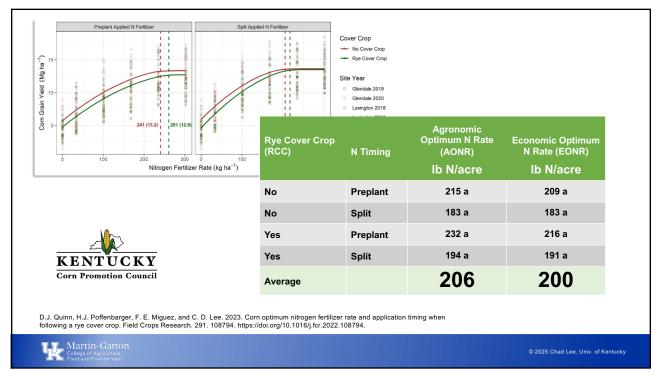
33

Where we think we are headed...

Terminate small grain cover crop 4 to 5 weeks before planting corn ...

OR... before it produces 2,000 lb of biomass

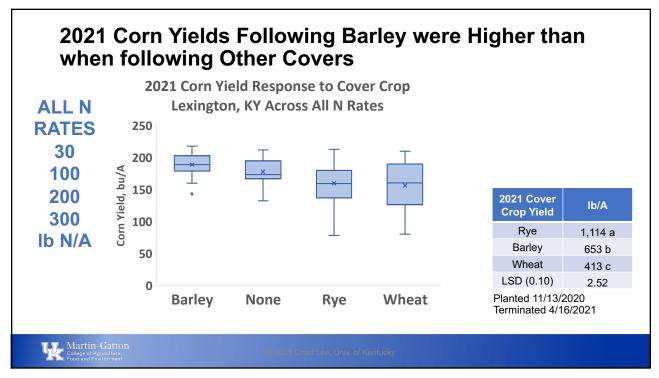

... whichever comes first.


Still working on studies and data to support this opinion.

© 2025 Chad Lee, Univ. of Kentucky

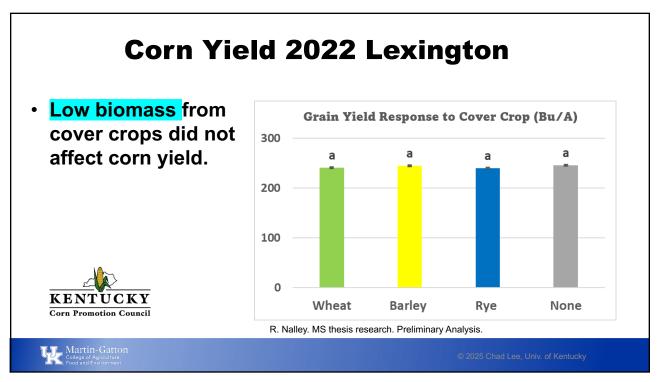
35

37


Will other cereals work better than rye?

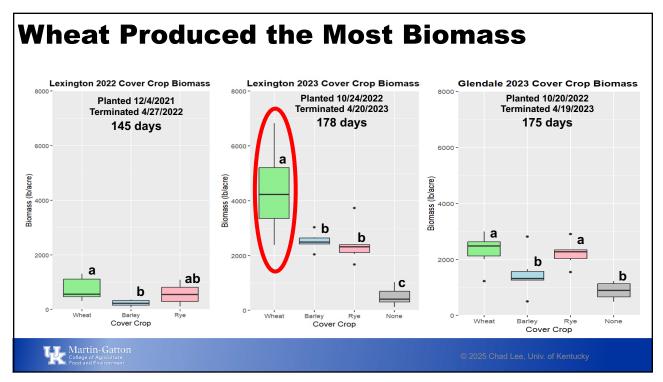
Wheat and Barley

- Should have less biomass...maybe less of a nitrogen penalty than rye.
- Easy to plant like rye.
- Easy to get good seed quality.
- Easy to find.
- Less expensive than some other species.



2025 Chad Lee, Univ. of Kentucky

39


41

43

45

Measuring N Content in the Season

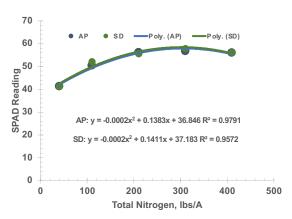
SPAD

- SPAD measures amount of green color in the leaves.
- Other studies have linked those reading to Nitrogen content estimates.

Leaf Samples

• Ear leaves taken at R1, dried, ground and then analyzed for N content.

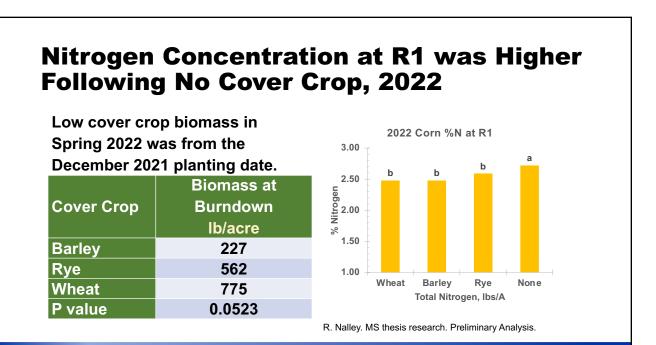
© 2025 Chad Lee, Univ. of Kentucky



47

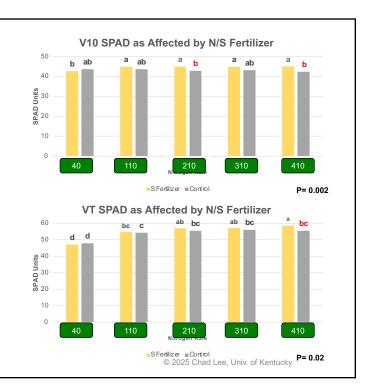
SPAD readings for each N rate were similar w/ and w/o cover crops

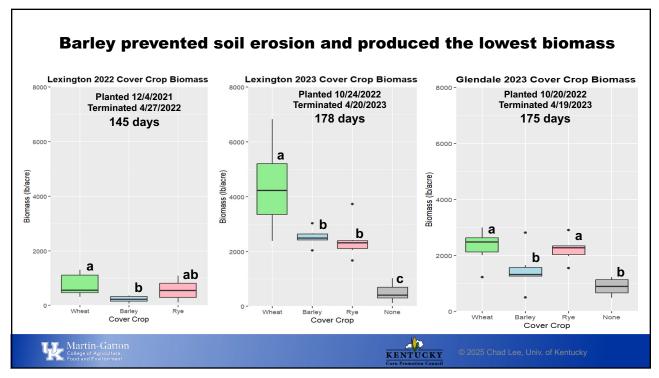
LOW cover crop biomass in Spring 2022 was from the December 2021 planting date.


	Biomass at
Cover Crop	Burndown
	lb/acre
Barley	227
Rye	562
Wheat	775
P value	0.0523

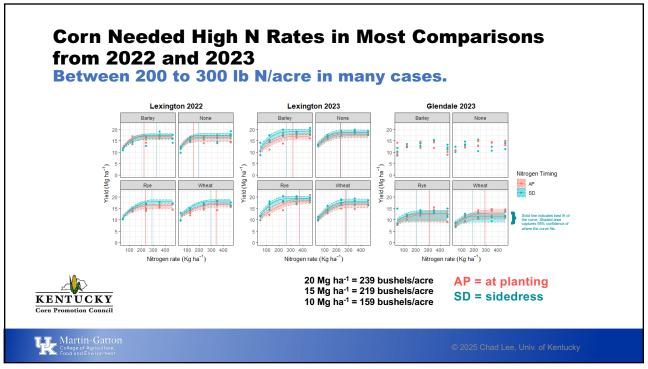
2022 Corn SPAD Readings at R1

R. Nalley. MS thesis research. Preliminary Analysis.


© 2025 Chad Lee, Univ. of Kentuck



49


2023 Sulfur Interaction

- Significant S interaction with higher N rates at V10 and VT growth stages
- No impact on yield.

51

Sometimes Sidedressing Makes a Huge Difference

Sometimes it does not.

© 2025 Chad Lee, Univ. of Kentucky

53

Sidedress Reduced N Needed at Lexington 2023

Corn Replanted 1 month after 1st planting. All N applied at planting was applied at 1st planting.

Lexington, 2023		
Timing	AONR, Ib N/acre needed to maximize yield	Yield at AONR, bu/acre
At Planting	301	278
Sidedress	212	293
Difference	-89	15

At Planting: All Nitrogen applied at 1st planting Sidedress: 40 lb N/A (32%UAN) applied at 1st planting. Remainder (Urea) applied at V3 growth stage.

2025 Chad Lee, Univ. of Kentucky

Lexington 2023

Corn Replanted 1 month after 1st planting. All N applied at planting was applied at 1st planting.

Lexington 2023: Yields ranged from 266 to 300 bu/A

Cover Crop	AT PLANTING AONR, Ib N/A	SIDEDRESS AONR, Ib N/A	Difference
Wheat	267	244	23
Barley	305	204	101
Rye	417	200	217
None	217	199	18
Averages	301	212	89

At Planting: All Nitrogen applied at 1st planting Sidedress: 40 lb N/A (32%UAN) applied at 1st planting. Remainder (Urea) applied at V3 growth stage.

© 2025 Chad Lee Univ of Kentucky

55

Cover Crop (rye, wheat and barley) competed with corn for Nitrogen (even after the cover crop was dead)

Environment	Average AONR, lb N/A	No Cover Crop AONR, Ib N/A
LEX22	285	191
LEX23	313	232
GLN23	159	40

- LEX22 and LEX23: Cover Crops required an average of 88 lb N/acre more
- Lower N needed at Sidedress Timing in 6 of the 10 comparisons.

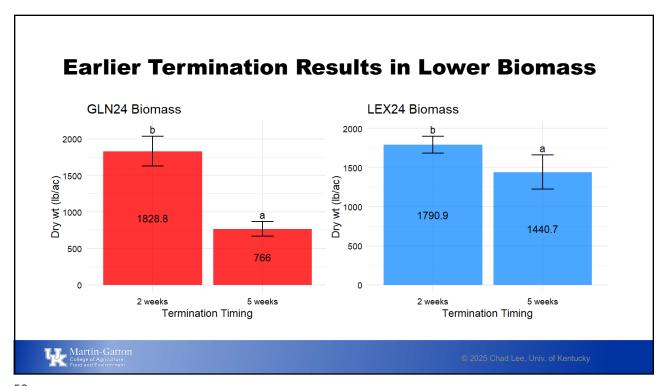
AONR:

Agronomic Optimum Nitrogen Rate The lowest N rate needed to maximize yield.

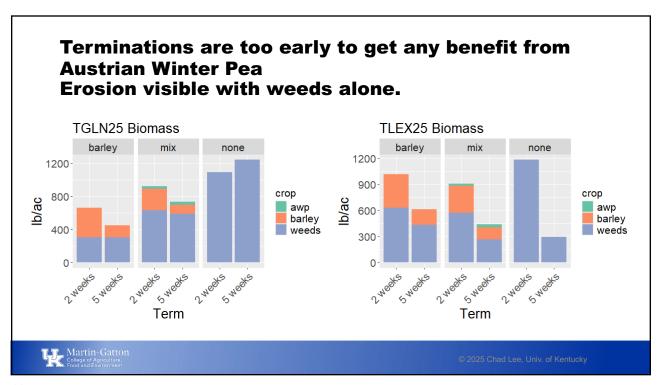
2025 Chad Lee, Univ. of Kentucky

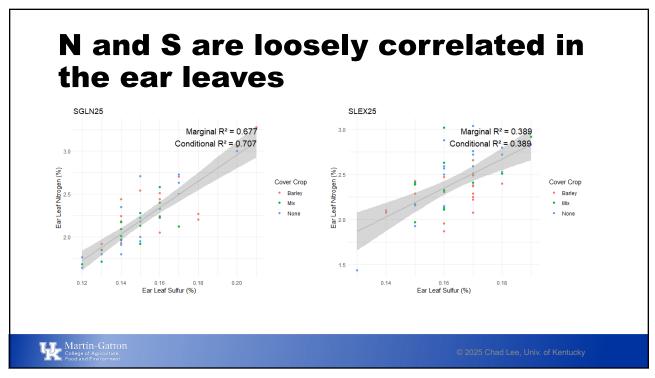
Adding a Legume...

- Barley and Barley + Austrian Winter Pea
- AWP might make the cover crop less competitive
- · Included an earlier termination timing
- We need cover crops to prevent erosion.
- They cannot compete with the corn if farmers will continue to use them.

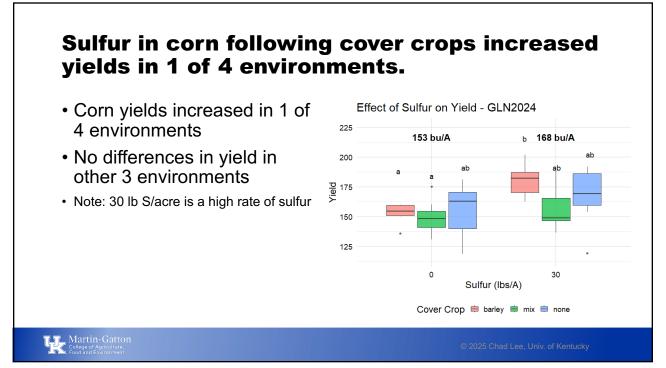

2025 Chad Lee Univ of Kentucky

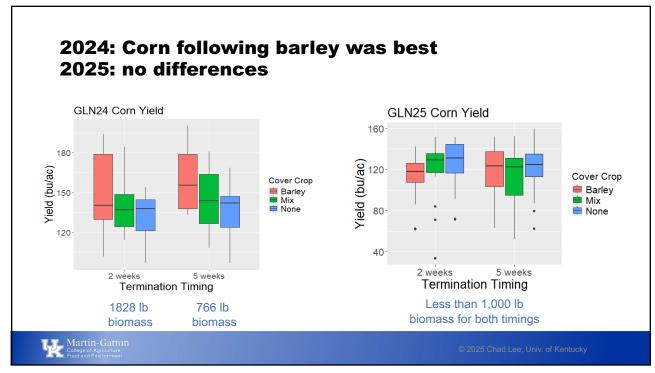
57


Treatments		
Cover Crop	Barley Barley+ Austrian Winter Pea (Mix) Fallow Control	
Termination	5 weeks before planting (Early) 2 weeks before planting (Standard)	
Nitrogen Rate	40 lb N/acre (lb/ac) 170 lb N/ac 215 lb N/ac 260 lb N/ac 349 lb N/ac	



2025 Chad Lee, Univ. of Kentucky




59

61

63

Keeping soils covered and keeping your shirt

- 1. Stick with a cereal: wheat, barley or rye
- 2. Terminate 2 to 5 weeks before planting
- 3. Sidedress most of the N to avoid competition
- 4. Maybe add Sulfur is cover crop biomass is high
- 5. Possibly keep biomass below 1,000 lb/acre or less

2025 Chad Lee, Univ. of Kentucky

Thank you!

Chad Lee, Ph.D.
Extension Professor, Corn Agronomist
University of Kentucky
Chad.Lee@uky.edu
@KentuckyCrops

65

Killing the Cover Crop

AGR-6 "Burndown" Options for Corn

Glyphosate formulation ¹	Annuals <6" tall	Annuals >6" tall	
3 lb Glyphosate formulations Numerous products (3 lb ae/gal)	1.5 to 2 pt/A (24 to 32 fl oz/A) (0.56 to 0.75 lb ae/A)	2 to 3 pt/A (32 to 48 fl oz/A) (0.75 to 1.13 lb ae/A)	
Buccaneer 5 (3.75 lb ae/gal)	1.2 to 1.75 pt/A (19 to 28 oz/A) (0.56 to 0.82 lb ae/A)	1.75 to 2.5 pt/A (28 to 40 oz/A) (0.82 to 1.17 lb ae/A)	
Duramax Durango DMA (4 lb ae/gal)	1.13 to 1.5 pt/A (18 to 24 fl oz/A) (0.56 to 0.75 lb ae/A)	1.5 to 2.25 pt/A(24 to 36 fl oz/A) (0.75 to 1.13 lb ae/A)	
Roundup PowerMAX Roundup Weather MAX (4.5 lb ae/gal)	1 to 1.4 pt/A (16 to 22 fl oz/A) (0.56 to 0.77 lb ae/A)	1.4 to 2 pt/A (22 to 32 fl oz/A) (0.77 to 1.13 lb ae/A)	
Roundup PowerMAX 3 (4.8 lb ae/gal)	0.94 to 1.25 pt/A (15 to 20 fl oz/A) (0.56 to 0.75 lb ae/A)	1.25 – 1.88 pt/A (20 to 30 fl oz/A) (0.75 to 1.13 lb ae/A)	
¹ See page 20 for a detailed list of glyphosate products			

Martin-Gatton

2025 Chad Lee, Univ. of Kentucky