
Bt Resistance in European Corn Borer in Nova Scotia, Canada

JOCELYN SMITH, YASMINE FARHAN, AND ART SCHAAFSMA

UNIVERSITY OF GUELPH RIDGETOWN CAMPUS, RIDGETOWN, ON

Indiana CCA Conference Indianapolis, IN | December 17-18, 2019

Distribution and Density of Corn in Eastern Canada

http://www.agr.gc.ca/atlas/agpv?webmap-en=f9f37b7d4276480398c0f2fa46c7a8cf&webmap-fr=b8ae183cd893462f89045028b09fcdff

Ridgetown Campus

European Corn Borer

Figure 1. Approximate distribution of annual generations of European com borer In the United States and Canada. Mason, C.E., M.E. Rice, C.D. DiFonzo,

Mason, C.E., M.E. Rice, C.D. DiFonzo, R.P. Porter, and 20 others. 2018. European Corn Borer Ecology, Management, and Association with Other Corn Pests, NCR 0327. Ames: Iowa State University Extension and Outreach.

RIDGETOWN CAMPUS

Oct. 5, 1940 Canadian Countryman

J. Obermeyer

Calls for Officials to "Crack Down" on Careless Corn Growers

THE season of corn harvest is again at hand, and apparently we have quite an increase in corn borer infestation.

It is probable that weather conditions prevailing during the growing season will be blamed for this increase in borers. However, here is one farmer who believes that weather conditions are not the only cause of increased damage by this voracious insect. In many districts one sees evidence of laxity in the enforcement of the Corn Borer Act.

I have seen fields with almost one-third of the corn stubble lying on top of the ground after springseeding operations had been completed. On some farms corn stalks are allowed to become mixed with straw and litter, and the whole mass left lying in the barnyard until midsummer.

The farmer who fails to plow under his corn stubble is usually looked upon as being very delinquent. But is he a great deal worse than the farmer who carefully plows corn stubble under in the fall, and then tears half of it up again in the spring? Or is he much worse than the farmer who fails to burn, at the proper time, all corn stalks and other corn refuse that is lying about his premises?

It is the duty of those officials who have the responsibility of enforcing the Corn Borer Act to "crack down" on a few of these careless corn growers. Let them know that we have at least one law on the statute books that has teeth in it. If the Corn Borer Act were enforced to the limit, the damage done by borers in a year of normal weather conditions would be negligible.

Middlesex Co. DISSATISFIED CORN GROWER.

UNIVERSITY #GUELPH RIDGETOWN **TWO GENERATION STRAIN (BIVOLTINE) LIFE CYCLE** CAMPUS NOV. - APR. JUNE AUGUST OCT. MAY JULY SEPT. July 26 - Aug 14 May 26 - June 10 **Risk Factors:** 1st Generation: Tallest, early-planted corn -2nd Generation: - Pollinating corn, late planted Second Generation First Generation

European Corn Borer Injury 1st Generation

•1st instar – window paning, feeding within the whorl

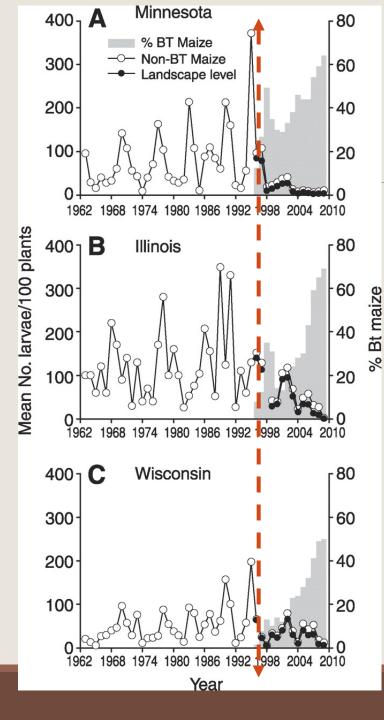
•2nd-3rd instar – shot holes in whorl leaves and boring into mid-rib

•Stalk boring, frass looks like sawdust near entry holes

European Corn Borer Injury 2nd Generation

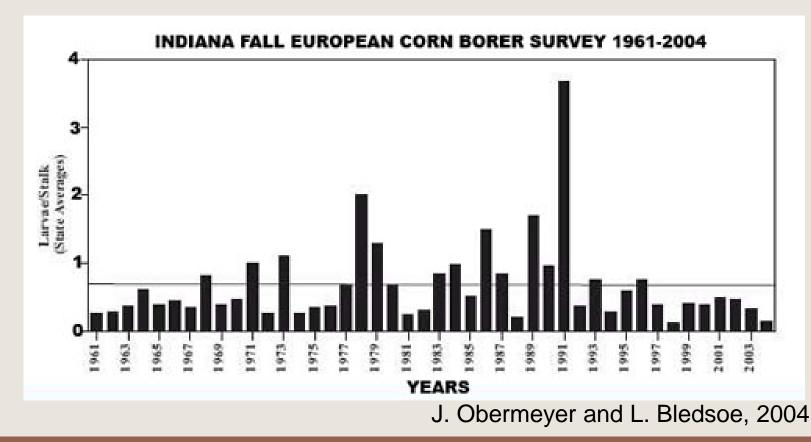
- •After VT, larvae move to leaf axils, leaf sheath and stalks
- •4th 5th instars stalk tunneling
- •Ear drop, lodging, stalk rots, ear rots and mycotoxins
- •5-6% yield loss with 1 larva/plant

- Monitoring moth flights with pheromone traps
- Scouting for egg masses, small larvae, or feeding
- Insecticide application


JNIVERSI ≠GUELPI

RIDGETOWN

CAMPUS


Nat	ural ene	mies				
Bt c	corn				. Well	
			DON (ppm			
	1996	1997	1998	1999	Avg	son S. Rao M. E. Rice
Non-Bt isoline	1.25	0.51	1.15	1.19	0.96	
Bt	0.45	0.36	0.69	1.06	0.57	
<i>P</i> -value	<0.0001	0.02	0.0019	0.51	<0.0001	1
		Schaat	fsma et al.	2002 Pla	nt Disease	e

ECB Population Suppression

\$3.2 billion for MN, IL, and WI corn growers

\$2.4 billion for non-Bt corn growers

Areawide Suppression of European Corn Borer with Bt Maize Reaps Savings to Non-Bt Maize Growers Hutchison et al. *Science* 08 Oct 2010:Vol. 330, Issue 6001, pp. 222-225 GM Crops and Food: Biotechnology in Agriculture and the Food Chain 3:3, 184-193; July/August/September 2012; © 2012 Landes Bioscience

Understanding successful resistance management

The European corn borer and Bt corn in the United States

Blair D. Siegfried^{1,*} and Richard L. Hellmich²

High dose/Refuge Strategy

RIDGETOWN

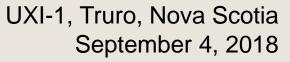
CAMPUS

• Multiple high dose Cry toxins targeting ECB: Cry1Ab (1996), Cry1F (2002), Cry1A.105 x Cry2Ab2 (2009)

• Single toxin hybrids \rightarrow Pyramided toxins in hybrids

• Non-Bt refuge: 20% Structured \rightarrow 10% \rightarrow 5% RIB

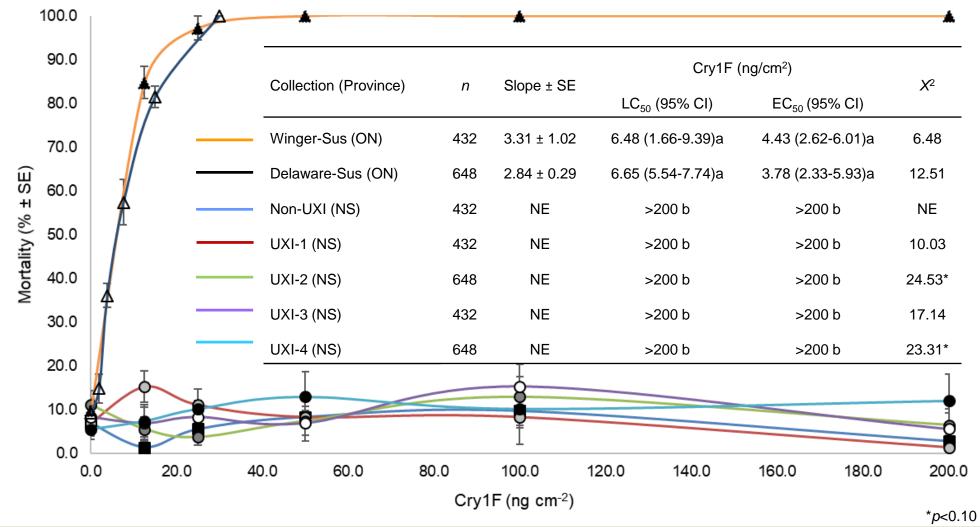
Resistance Monitoring


Table 2. No significant decrease in susceptibility to Bt crops: 19 cases involving five Bt toxins, 11 pest species, and seven countries (mean documented years of susceptibility^a = 10.5 yr), updated from Tabashnik and Carrière (2017)

Insect	Crop	Toxin	Country	Year comm ^b	Years ^a	Reference ^c
O. nubilalis	Corn	Cry1Ab	Spain	1998	15	EFSA (2015)
O. nubilalis	Corn	Cry1Ab	United States	1996	15	Siegfried and Hellmich (2012)
O. nubilalis	Corn	Cry1Fa	United States	2003	8	Siegfried et al. (2014)

Tabashnik and Carriere (2019) JEE doi.org/10.1093/jee/toz173

Field ID	Bt	Planting date	% ECB Damage	Collection date	Crop stage @ Collection	Beginning #ECB
UXI-1 – NS	Cry1F	16-May-18	70	04-Sept-18	R5	239
UXI-2 – NS	Cry1F	16-May-18	30	04-Sept-18	R5	75
UXI-3 – NS	Cry1F	09-May-18	40	04-Sept-18	R4	193
UXI-4 – NS	Cry1F	12-May-18	30	05-Sept-18	R4-R5	57
Non-UXI – NS	None	24-May-18	60	06-Sept-18	R4	131



Ridgetown Campus

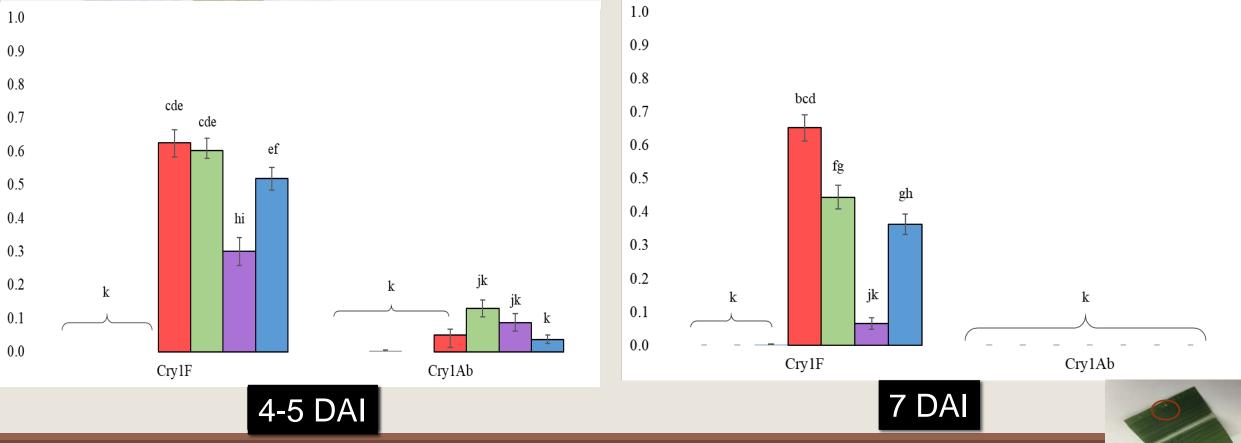
Diet overlay bioassay results

NE = not estimable due lack of mortality response within the concentration range tested.

Smith et. al. 2019 Scientific Reports

Concentrations tested: 0, 12.5, 25.0, 50.0, 100.0, 200.0 ng cm⁻² for all collections except Delaware, ON where concentrations were: 0, 1.9, 3.8, 7.6, 15.0, 30.0 ng cm⁻².

Leaf tissue bioassay results

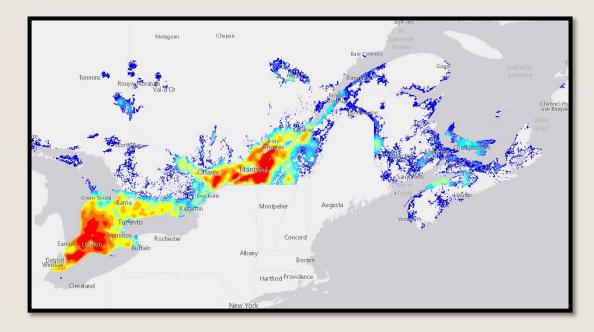


RIDGETOWN

CAMPUS

Proportional survival ± SE

Smith et. al. 2019 Scientific Reports

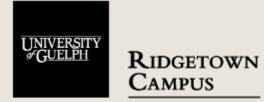

Why did Cry1F resistance evolve in Nova Scotia?

• "Island Effect"?

RIDGETOWN

CAMPUS

- Single toxin corn hybrids being sold in small, short-season markets
- Violation of the High-Dose Refuge Strategy?
 - Very little refuge compliance monitoring
- Under the radar...
 - Resistance monitoring historically focused on major corn growing regions
 - ECB resistance monitoring to Cry1F was halted in 2017 in Canada
 - Failure to react to early warning signs
- A combination of things...

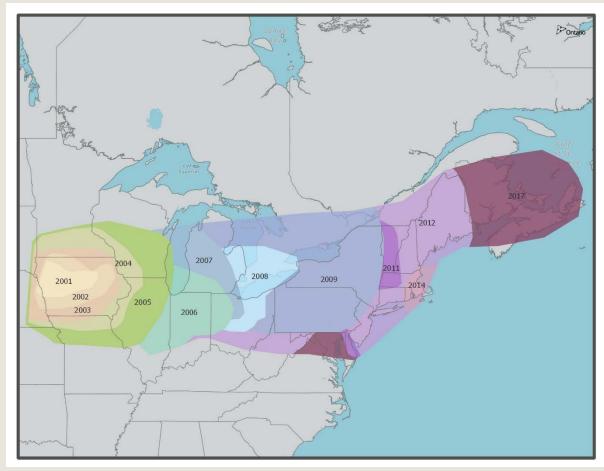


Recommendations for Mitigation

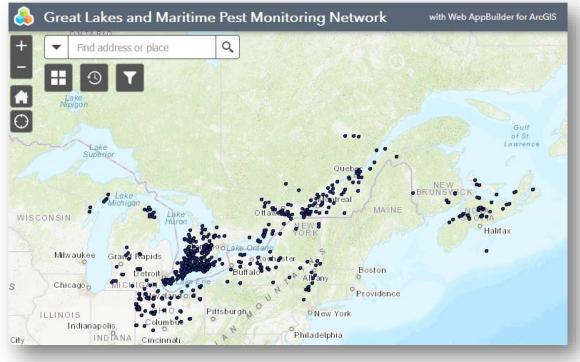
- 1. Stop sales and planting of corn hybrids that express a single Bt toxin targeting ECB in Canada.
 - Corteva replaced popular Cry1F hybrid with Cry1Ab x Cry1F pyramid hybrid in Maritimes Region in 2019
 - Single toxin Bt hybrids for ECB sold in Manitoba in 2019
 - CFIA requested phase-out plans for single toxin products from trait providers
- 2. In UXI fields, corn stalks should be chopped and buried using tillage in the fall to reduce the frequency of resistance alleles in ECB populations.
- 3. Determine susceptibility of ECB in this region to Cry1F, Cry1Ab, Cry1A.105, and Cry2Ab2.
- 4. Increase Bt resistance monitoring of ECB in the Maritimes, Manitoba, and surrounding regions.
- 5. Study of ECB phenology, voltinism, pheromone races, host range in the Maritimes and surrounding regions.

Management of Western Bean Cutworm and Deoxynivalenol in Canada

JOCELYN SMITH¹, DAVID HOOKER¹, TRACEY BAUTE², AND ART SCHAAFSMA¹

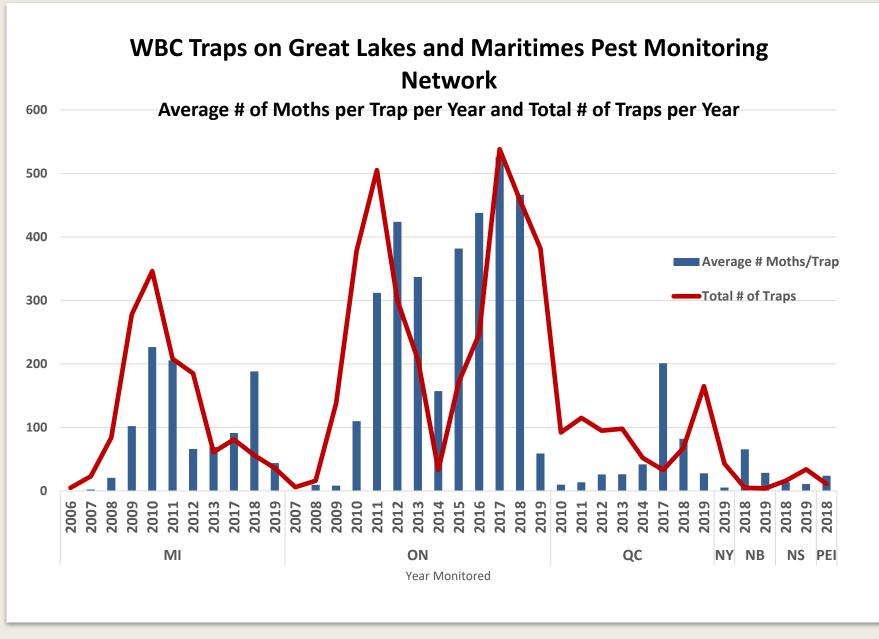

¹UNIVERSITY OF GUELPH RIDGETOWN CAMPUS, RIDGETOWN, ON ² ONTARIO MINISTRY OF AGRICULTURE, FOOD AND RURAL AFFAIRS

Western Bean Cutworm Range Expansion

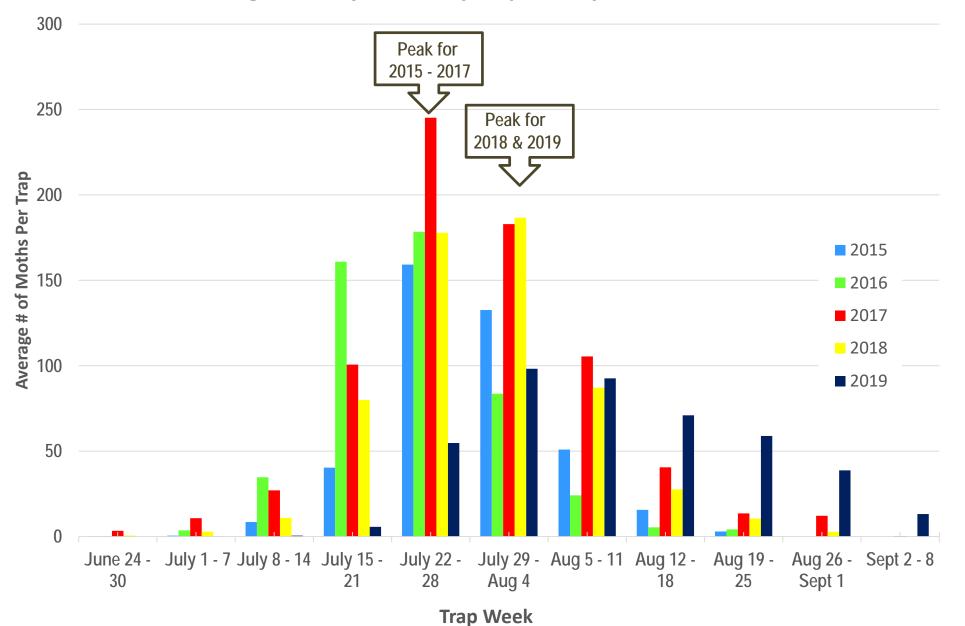

Historical range

Since 2000

Smith et al. 2019 JIPM


Great Lakes and Maritimes Pest Monitoring Network

ADB and EMB Collaboration (Jen Birchmore, GIS)


- Over 850 traps in 2019.
- Real-time mapping and dashboard to show weekly trap results.
- Pests on the network include:
 - Black cutworm
 - Corn earworm
 - European corn borer
 - Fall armyworm
 - True armyworm
 - Western bean cutworm
- Currently includes corn (all types), dry and snap beans, and other crops with these pests.

T. Baute, OMAFRA 2019

Average Weekly WBC Trap Capture By Year in Ontario

T. Baute, OMAFRA 2019

WBC Injury

- •Yield loss of 3.6-15 bu/ac with one larva per plant
- •Grain quality loss
- Secondary pests
- •Mycotoxins

Gibberella Ear Rot

Asexual state: *Fusarium graminearum* Sexual state: *Gibberella zeae*

Mycotoxins: Deoxynivalenol (DON), Zearalenone

Commodity	Canada	Commodity	USA	
Diets for cattle & poultry	5 ppm	Grains and grain by-products destined for ruminating beef and feedlot cattle older than 4 months and chickens (not exceeding 50% of the cattle or chicken total diet)	10 ppm	
Diets for swine, young calves, & lactating dairy animals	1 ppm	Grains and grain by-products (not exceeding 40% of the diet)	5 ppm	
		·		

Fusarium graminearum and DON in Ontario

DON	2011	2012	2013	2014	2015	2016	2017	2018	2019
<0.5 ppm	47%	84%	83%	66%	75%	48%	69%	33%	84%
0.5-<2.0 ppm	28%	12%	15%	26%	20%	26%	17%	27%	12%
2.0-5.0 ppm	17%	4%	1%	6%	5%	18%	8%	15%	4%
>5.0 ppm	7%	0%	0%	2%	0%	8%	6%	25%	0%

B. Rosser and A. Tenuta, OMAFRA 2019

- Dependent on: Weather, hybrid susceptibility, insect injury = primarily WBC in ON
- Difficult to forecast

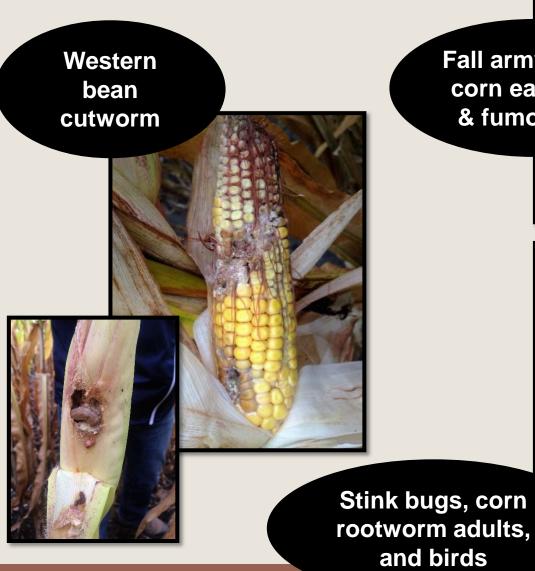
RIDGETOWN

CAMPUS

Incidence of WBC injury is more important than severity

To target both WBC and Fusarium, you must compromise on timing: Target <u>full silk emergence</u> and tank mix insecticide and fungicide

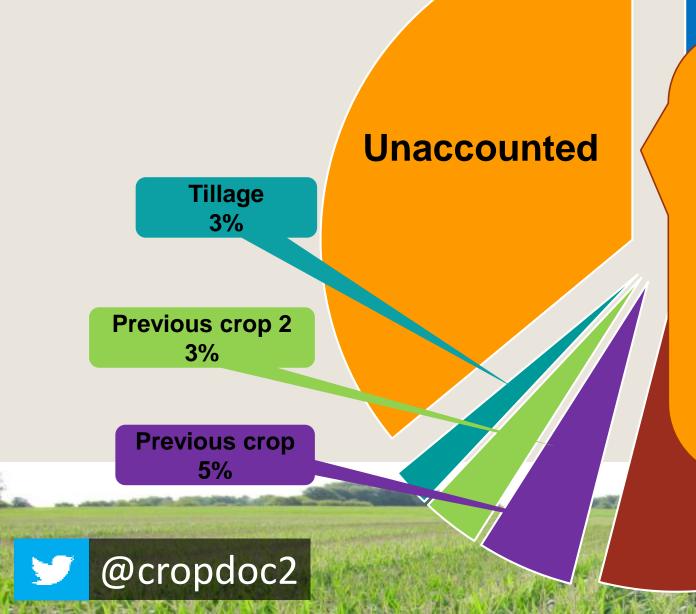
Infection by wounding - broad window


RIDGETOWN

CAMPUS

J. Obermeyer, Purdue

J. Obermeyer, Purdue

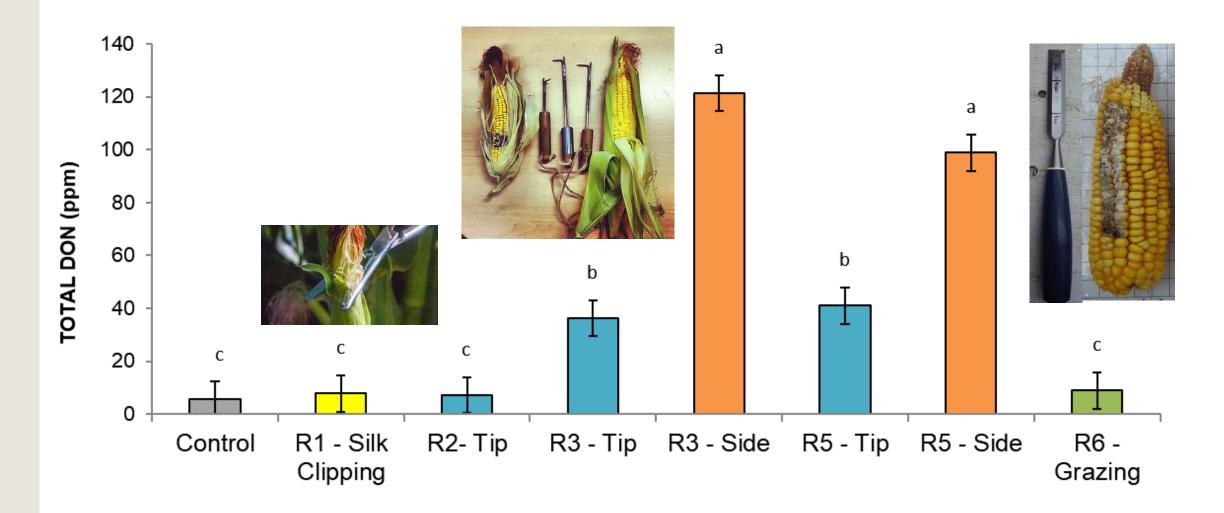


Fall armyworm, corn earworm & fumonisins

P. Porter, TAMU

What is responsible for DON variability from year-year, field-field, etc?

Unaccounted in the analysis


- Insect damage (e.g. WBC)
- Pathogen-isolate variability?
- Plant pop and row width?
- Topography?
- Plant-plant variability?
- Bird damage?
- Stress?
- ???

Hooker and Schaafsma (2005) Can. J. Plant Path. 27:347-356

RIDGETOWN Effect of injury at different corn stages on DON

UNIVERSITY #<u>GUELPH</u>

CAMPUS

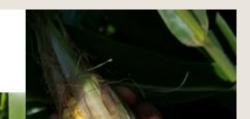
Limay-Rios, Smith, and Schaafsma, 2012-13

Managing DON and WBC

- Select multiple hybrids: select those with some tolerance to GER/DON
 - Reduce Weather risk: select hybrids with different silking dates across fields
 - Silk infection by F. graminearum happens regardless of WBC
- SCOUT for WBC egg masses every 5 days

- BEGIN when moths are active (3rd week of July), CONTINUE for 3 weeks, CUMULATIVE THRESHOLD = 5% (?)
- High water volume (20 GPA), over the top
- Fungicide (+ Insecticide for WBC if warranted): Triazole (Proline or Caramba) at full silking
- Manage to reduce plant-plant variability (uniform emergence)
- Adjust combine for max cleanout/clean grain
- Harvest infected grain early and dry immediately after harvest

WBC Resistance to Cry1F


	Year	Trmt	Plants infested (% ± se)		Kernel damage (% ± se)		Yield (T/ha ± se)
			Egg masses	Larvae (R3)	Incidence	Severity	
The i	2011	Non-Bt	1.2 (0.52)	11.1 (4.01)	88.9 (3.16)b	3.1 (0.31)b	10.1 (1.15)
		SSX	1.0 (0.47)	10.2 (3.80	54.5 (5.45)a	1.4 (0.19)a	10.6 (1.15)
	2012	Non-Bt	2.9 (1.08)	75.0 (2.85)	85.5 (7.95)	5.3 (0.63)	10.2 (1.93)
		SSX	5.6 (1.60)	67.7 (3.03)	84.5 (8.18)	6.2 (0.68)	9.5 (1.93)
a A.	2013	Non-Bt	3.4 (0.57)	71.9 (6.50)	100.0	5.3 (0.69)	6.6 (1.08)
		SSX	4.2 (0.63)	52.9 (7.25)	100.0	7.9 (0.53)	7.3 (1.08)
8	2014	Non-Bt	16.0 (1.82)	35.6 (8.91)b	47.9 (7.55)	2.4 (0.45)	6.3 (0.47)
OTHWELL 2013		SSX	19.9 (2.13)	6.1 (3.69)a	50.0 (7.56)	2.5 (0.46)	6.6 (0.47)
		SSX RA	23.1 (2.35)	12.3 (5.30)a	56.3 (7.50)	2.7 (0.50)	6.1 (0.47)

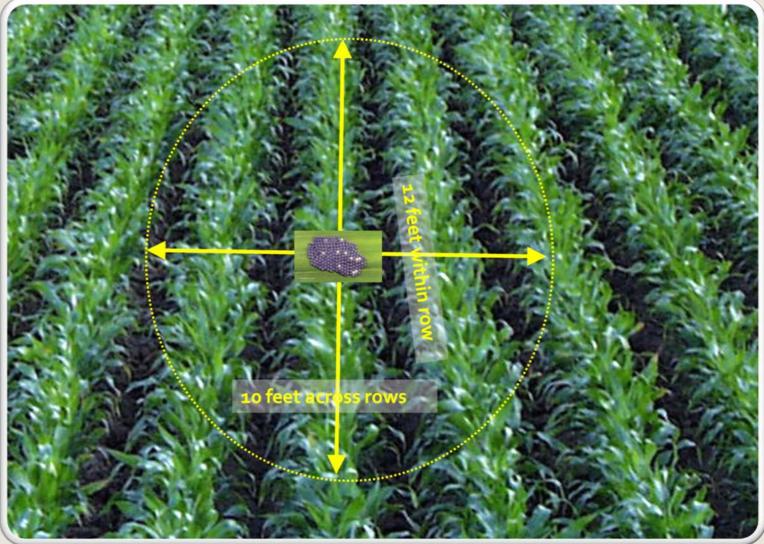
BC

Smith et al. 2017 JEE 110(5): 2217-2228

2016, southcentral MI WBC infested Cry1F fields

John Obermeyer, IPM Specialist, Purdue University "No western bean cutworm control in this Cry1F-expressing corn"

Vip3A and WBC



Likely high dose for 1st instars

Likely not high dose for 3rd and 5th instars

Collection	Instar	n	Slope ± SE	LC ₅₀ (95% CI)	LC ₉₉ (95% CI)	X ²	TR_{50}	TR ₉₉
	1st	504	2.17 (0.291)	25.0 (20.7-29.3)b	180.5 (130.5-291.3)b	9.78	\wedge	
Middlesex F ₄	3rd	480	2.47 (0.330)	3433 (2251-4539)a	29977 (21910-48861)a	7.78	137	166
	5th	336	2.11 (0.255)	4058 (2559-5496)a	42915 (28794-83197)a	20.27	162	238
	1st	432	2.76 (0.359)	46.3 (36.3-55.8)b	322.1 (226.8-566.5)b	13.62		
Norfolk F ₂	3rd	432	2.38 (0.301)	3583 (2957-4216)a	24597 (17889-39378)a	12.11	77	76
	5th	288	2.23 (0.322)	2678 (1617-3812)a	29579 (18969-60206)a	12.25	58	92

Inter-plant movement up to 3.5 m in any direction from natal plant (Pannuti et al. 2016)

C. DiFonzo, MSU

Ridgetown Campus

Manage WBC and Prevent Resistance

ROTATE WBC CONTROL OPTIONS YEARLY

Insecticides and Vip3a corn

- Pyrethroids (Group 3)
 - Matador (lamba-cyhalothrin)
 - Decis (dimethoate)
- Diamides (Group 28)
 - Coragen (chlorantraniliprole)
- Spinosyns (Group 5)
 - Delegate (Spinetoram)
- Pre-mix of Groups 3 & 28
 - Voliam Xpress (lamba-cyhalothrin + chlorantraniliprole)

Monitor for unexpected damage by WBC in late August

Bt toxins for control of Lepidoptera

Cry1Ab	Cry1A.105 x Cry2Ab2	Vip3A
(YieldGard/Agrisure) Cry1F	(VT Double Pro/	(Viptera/Leptra/
(Herculex I)	SmartStax/Powercore)	Trecepta)

TARGET PEST	EFFECTIVE	INEFFECTIVE	FUTURE TOXINS
EUROPEAN CORN BORER	Cry1Ab Cry1F Cry1A.105 x Cry2Ab2	Vip3A	Unknown… 10 yrs +
WESTERN BEAN CUTWORM	Vip3A	Cry1Ab Cry1F Cry1A.105 x Cry2Ab2	Unknown… 10 yrs +
CORN EARWORM	Vip3A	Cry1Ab Cry1F Cry1A.105 x Cry2Ab2*	Unknown… 10 yrs +

Acknowledgements

- Sonny Murray, Field Crop Specialist
- Dave Harwood, Technical Services Manager, Pioneer Hi-Bred Canada
- Amanda Eisses, Pioneer Sales Representative
- Marianne Pushtai-Carey, Case-Western University
- Todd Phibbs, University of Guelph Ridgetown Campus

A federal-provincial-territorial initiative

