A Comprehensive Approach to Soil Health: Merging Science, Economics and Connectivity

Cristine L.S, Morgan, Ph.D. Chief Scientific Officer

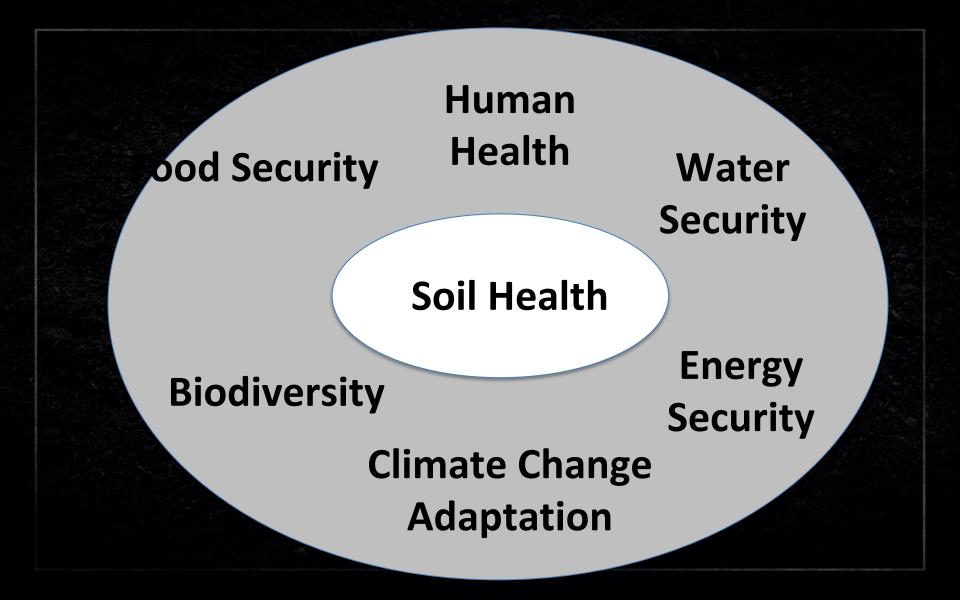
Mission

Safeguard and enhance the vitality and productivity of soil through scientific research and advancement

Team of 14 Scientists

Soil Scientists - 5
Biogeochemists - 2
Spatial Scientist - 1
Agronomists - 2
Ag. Economist - 1
Interns - 3

Wayne Honeycutt, CEO Cristine Morgan, CSO Sheldon Jones, COO Byron Rath, Sustainability Specialist



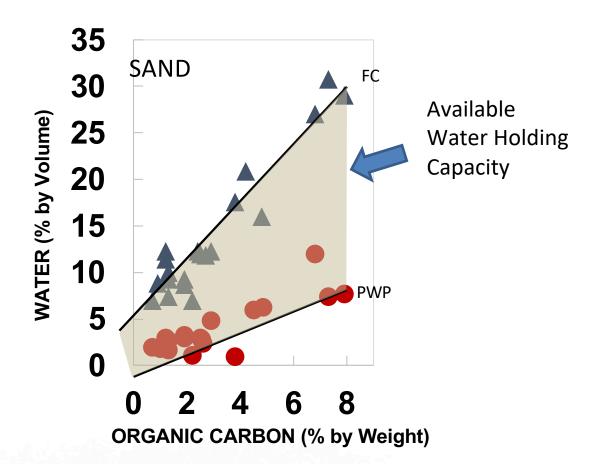
Soil Ecosystem Services

- 1. Biomass Production Yield
- Carbon Cycling SOC, Short-term Min. C, Permanganate Ox. C, Enzymes, Protein Index, Ester-Linked Fatty Acid Methyl Ester
- 3. <u>Nutrient Cycling</u> TN, N Mineralization, P, K, Micronutrients, biological measures above
- 4. Water Cycling Saturated Hydraulic Conductivity, Plant-Available Water, Bulk Density

South Dakota

Healthy Soil Cycles Nutrients

Healthy Soil Cycles Water



Healthy Soil Stays in Place

Drought Resilience

Adapted from Hudson (1994)

Pop Quiz Define and list Soil Ecosystem Services

SHI's Comprehensive Strategy to Improve Soil Health

Premise...

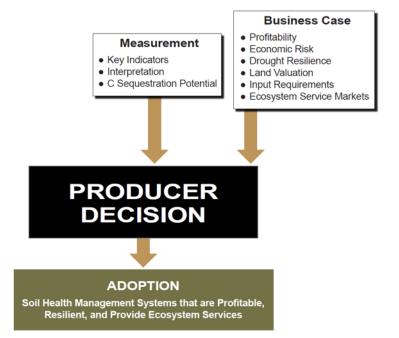
THE MOST CRITICAL INGREDIENT:

ADOPTION

Soil Health Management Systems that are Profitable, Resilient, and Provide Ecosystem Services

Business Case

- Profitability
- Economic Risk
- Drought Resilience
- Land Valuation
- Input Requirements
- Ecosystem Service Markets


PRODUCER DECISION

ADOPTION

Soil Health Management Systems that are Profitable, Resilient, and Provide Ecosystem Services

UNIFY RESTORE PROTECT

Education / Training

- Soil Science Basics
- Soil Health Benefits, Principles, Practices
- Decision Support Tools and Other Resources
- Personalized Soil Health Management System for Farm

Measurement

- Key Indicators
- Interpretation
- C Sequestration Potential

Business Case

- Profitability
- Economic Risk
- Drought Resilience
- Land Valuation
- Input Requirements
- Ecosystem Service Markets

PRODUCER DECISION

ADOPTION

Soil Health Management Systems that are Profitable, Resilient, and Provide Ecosystem Services

UNIFY RESTORE PROTECT

Education / Training

- Soil Science Basics
- Soil Health Benefits, Principles, Practices
- Decision Support Tools and Other Resources
- Personalized Soil Health Management System for Farm

Measurement

- Key Indicators
- Interpretation
- C Sequestration Potential

Business Case

- Profitability
- Economic Risk
- Drought Resilience
- Land Valuation
- Input Requirements
- Ecosystem Service Markets

Research and Development

- Understand/Manage the Microbiome
- Decision Support Tool for C Sequestration, Drought Resilience, etc.
- Optimize Nutrient Use Efficiency
- Soil Health Human Health Connections

PRODUCER DECISION

ADOPTION

Soil Health Management Systems that are Profitable, Resilient, and Provide Ecosystem Services

UNIFY RESTORE PROTECT

Business Case Education / Training Profitability Soil Science Basics Research and Measurement Economic Risk • Soil Health Benefits, Principles, Development Kev Indicators Drought Resilience Practices Interpretation • Understand/Manage the Land Valuation • Decision Support Tools and Other • C Sequestration Potential Input Requirements Microbiome Resources • Decision Support Tool for Ecosystem Service Markets Personalized Soil Health C Sequestration, Drought Management System for Farm Resilience, etc. Optimize Nutrient Use Efficiency Soil Health - Human **Health Connections PRODUCER DECISION ADOPTION** Soil Health Management Systems that are Profitable, Resilient, and Provide Ecosystem Services **Quantify Impacts and Additional Needs** C Sequestration Water Quality SOIL HEALTH Water Quantity GHG Emissions — INSTITUTE — Productivity UNIFY RESTORE PROTECT

Education / Training

- · Soil Science Basics
- Soil Health Benefits, Principles, Practices
- Decision Support Tools and Other Resources
- Personalized Soil Health Management System for Farm

Measurement

- Key Indicators
- Interpretation
- C Sequestration Potential

Business Case

- Profitability
- Economic Risk
- Drought Resilience
- Land Valuation
- Input Requirements
- Ecosystem Service Markets

Research and Development

- Understand/Manage the Microbiome
- Decision Support Tool for C Sequestration, Drought Resilience, etc.
- Optimize Nutrient Use Efficiency
- Soil Health Human Health Connections

PRODUCER DECISION

ADOPTION

Soil Health Management Systems that are Profitable, Resilient, and Provide Ecosystem Services

Communications and Consumer Education

- Environmental Benefits
- Productivity Benefits
- Food Nutrient Density Benefits (as determined)

Quantify Impacts and Additional Needs

- C Sequestration
- Water Quality
- Water Quantity
- GHG Emissions
- Productivity

Informed Policies

- Assess Impacts
- Evidence-Based Information
- Inform Policymakers

Fundamentals of Soil Health Management Systems

- 1. Keep soil armored
- 2. Minimize disturbance
- 3. Increase biodiversity
- 4. Maintain living roots
- 5. Incorporate grazing into row cropping

Measurements

North American Project to Evaluate Soil Health Measurements

GOAL: Identify most effective indicators of soil health

APPROACH: Evaluate soil health indicators on long-term agricultural research sites

Funders:

Partners:

Many universities, USDA, AAFC, CIMMYT

Long-Term Agricultural Research Sites (120)

Tier 1 Soil Health Indicators

Chemical/Biological Lab
pH
Electrical Conductivity
Cation Exchange Capacity
Percent Base Saturation

Organic Carbon
Short-Term C Mineralization
Total Nitrogen
Nitrogen Mineralization
Extractable P and K
Sec./Micro. (Ca, Mg, S, Fe, Zn, Cu, Mn)

Physical Lab/Field Particle Size

Bulk Density
Water Stable Aggregation
Available Water Holding Capacity
Hydraulic Conductivity Surface
Crop Yield

Tier 2 & 3 Soil Health Indicators Identified

Sodium Adsorption Ratio

Enzymes: B-Glucosidase, B-Glucosaminidase,

Phosphatase, Arylsulfatase

Soil Protein Index – Autoclave Citrate Extractable

Active Carbon – Permanganate Oxidizable C

Phospholipid Fatty Acid (PLFA)

Ester-Linked Fatty Acid Methyl Ester (EL-FAME)

Genomics

Reflectance

Soil Health Index Programs to be Evaluated

SMAF – Soil Management Assessment Framework

CASH – Cornell's Comprehensive Assessment of Soil

Health

Haney Test

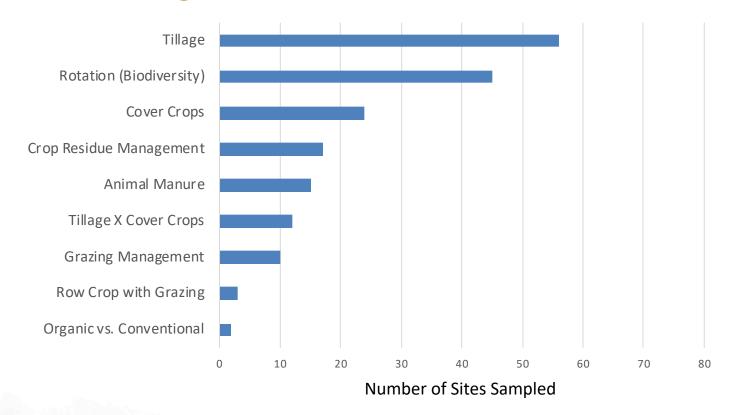
Soils sampled in 2019; Management/Yield data collection in process Analyses and report writing in 2019-2020

Sampling in April-July 2019: 2057 plots 100 % complete


Lab analyses 95 % Complete

QA/QC - 20% complete

Management profiles – 60% complete



Agronomic Crops

Soil Health Managemnt Practices

Pop Quiz What are the fundamental soil health practices?

Soil Structure

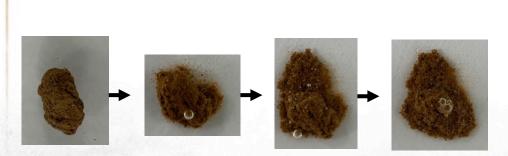
key physical indicator of soil hydrologic, biological

a measure of the effects of soil management practices

Healthy Soil Cycles Water

aggregate stability: a soil health indicator

- aggregate stability tells us on how management effects soil condition:
 - influences infiltration, aeration, and resistivity to erosion
 - influenced by manageable factors such as OM and biological activity
- multiple ways to measure
 - wet sieving
 - Cornell wet aggregate stability
 - aggregate size fractions
 - Smart phone (SLAKES)

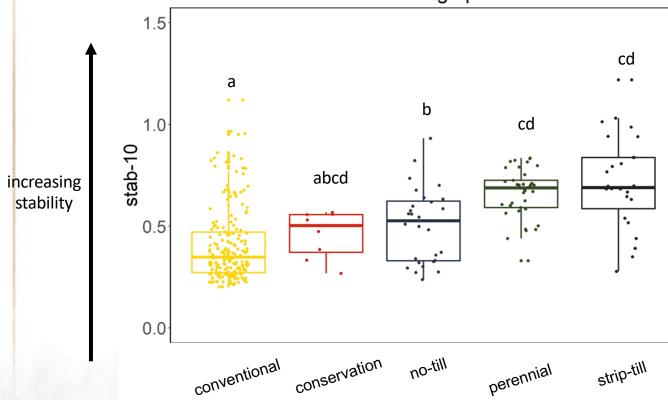


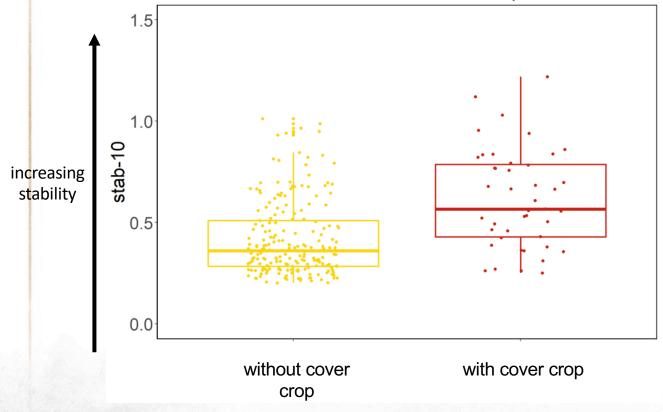
SLAKES: an app for aggregate stability

- developed at the University of Sydney, Australia
 - based on methodology in Fajardo et al., 2016
- stability at 10 min

-
$$stab-10 = \frac{initial\ area}{final\ area}$$

- larger stab-10 = more stable
- smaller stab-10 = less stable




SLAKES stability at 10 min in different tillage practices

- lowest stability in conventional
- highest stability in perennial grass and strip-till
- tillage, cover crop as fixed effect; location as random effect

SLAKES stability at 10 min with or without cover crop

- lower stability in without cover crop
- higher stability with cover crop

Pop Quiz

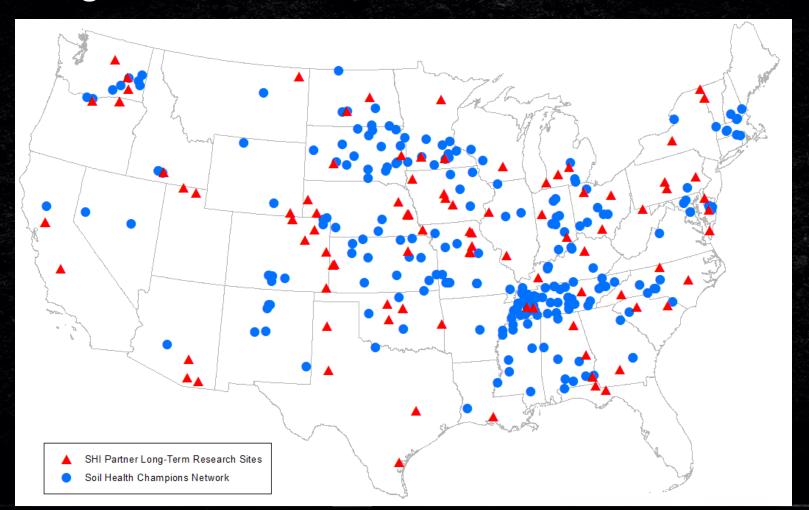
1. What are we managing when we manage for soil heath?

Business Case

GOAL: Assess Profitability of Soil Health Systems

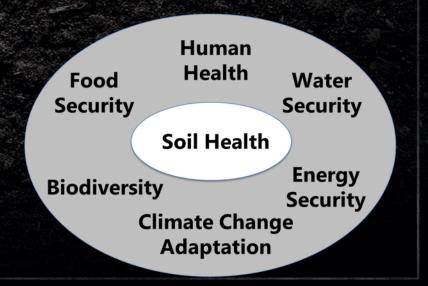
APPROACH: Calculate & Integrate Enterprise Budgets from On-Farm and Experimental Settings

Funders:


Partners:

Long-term Research Sites and NACD On-farm Sites

	Corn				Soybean			
	Production Practice				Production Practice			
	Revenue and		Net Income	Re	venue and		Net Income	
SOIL HEALTH	Expense		Change due to		Expense		Change due to	
	Increase:	Expense	Soil Health]	ncrease:	Expense	Soil Health	
	No-Till,	Decrease:	Management		No-Till,	Decrease:	Management	
	Cover Crop	Conventional	System	C	over Crop	Conventional	System	
	per Acre				per Acre			
Revenue						-		
Yield (bu.)	20.0		20.0		5.0		5.0	
Price (\$/bu.)	4.40		0.00		10.50		0.00	
Other Revenue ¹	0.00		0.00		0.00		0.00	
Total Revenue	88.00		88.00		52.50		52.50	
Expense								
Seed	45.00	0.00	45.00		28.00	0.00	28.00	
Fertilizer & Nutrients	0.00	29.25	-29.25		0.00	0.00	0.00	
Chemicals	17.23	2.75	14.48		17.99	15.80	2.18	
Diesel Fuel	3.28	5.90	-2.62		3.28	4.11	-0.83	
Input Costs	65.51	37.90	27.61		49.27	19.92	29.35	
Repairs & Maintenance	3.28	4.01	-0.73		3.28	3.33	-0.06	
Labor, Field Activities and Repairs	4.35	6.72	-2.37		4.35	4.94	-0.60	
Production Expenses	73.13	48.63	24.51		56.89		28.70	
Interest	1.76	1.17	0.59		1.37		0.69	
Post-harvest Expenses	9.00	0.00	9.00		1.61	0.00	1.61	
Custom Harvest	0.00	0.00	0.00		0.00		0.00	
Total Operating Expenses	83.89	49.79	34.10		59.87		31.00	
Returns to Operating Expenses	4.11	49.79	53.90		-7.37		21.50	
Capital Recovery & Fixed Costs	19.30	26.35	-7.04		19.30		-1.76	
Total Specified Expenses	103.19	76.14	27.05		79.17		29.24	
Returns to Specified Expenses	-15.19	76.14	60.95		-26.67	49.93	23.26	



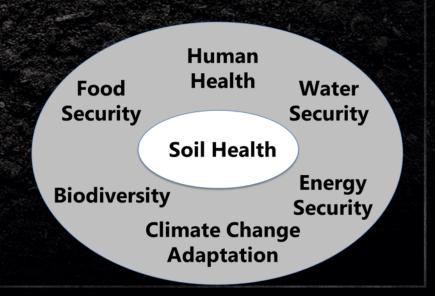
SOIL HEALTH

- INSTITUTE

Pop Quiz

How can Agriculture address our grand existential challenges?

SOIL HEALTH


- INSTITUTE

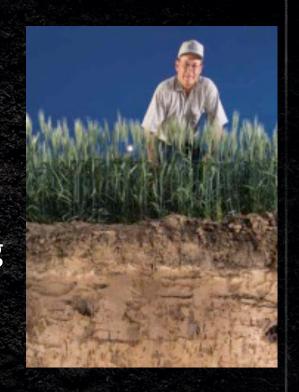
Pop Quiz

How can Agriculture address our grand existential challenges?

Nutrient management

Cover crops
Reduced till
Grazing

Soil Health Documentary "Living Soil"



Thank You!

soilhealthinstitute.org

UNIFY

RESTORE

PROTECT