Micronutrient - boron

Jim Camberato jcambera@purdue.edu

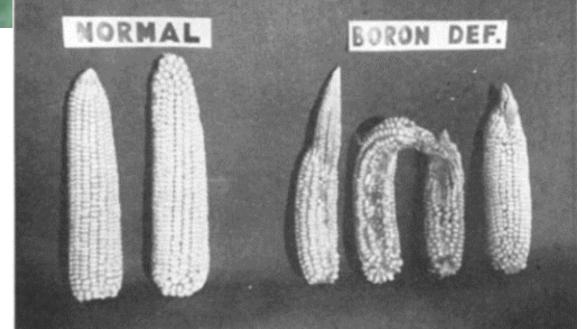
Thank you!

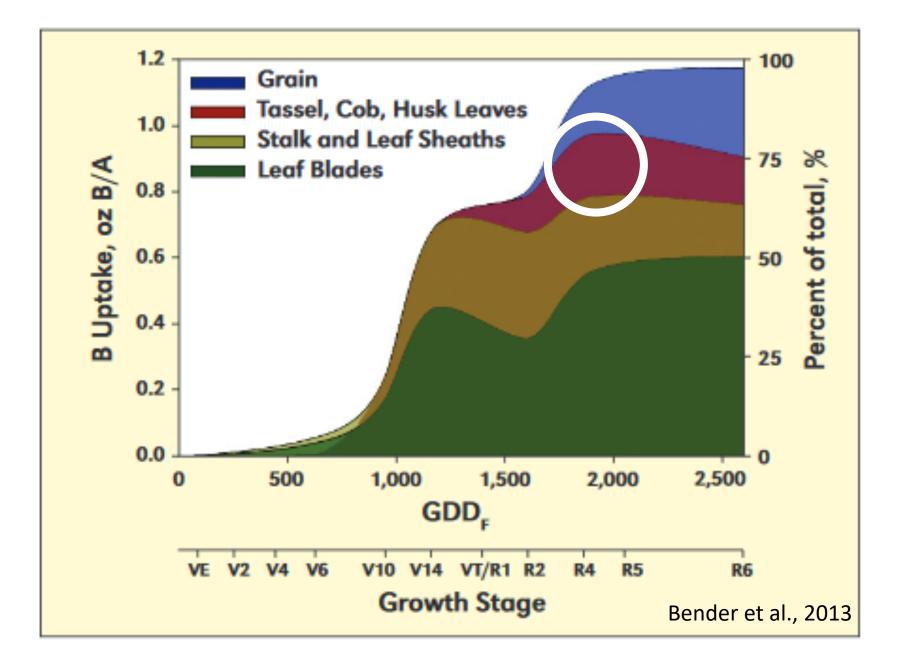
Purdue Crop Diagnostic Training and Research Center

This work was supported by the USDA National Institute of Food and Agriculture Hatch Project 1010713

Roles of boron in plant nutrition

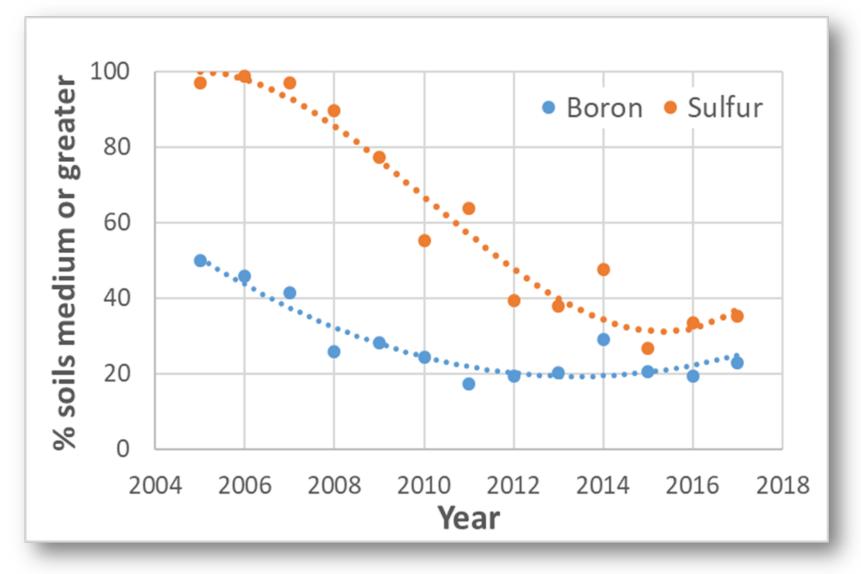
- •Stabilizes cell walls and membranes
- Involved in sugar transport
- Required for normal development of meristematic tissue: xylem, root tips, pollen tubes
- •Deficiency symptoms: death of meristems, failure to pollinate
- Not readily translocated in the plant


Soil boron


- •Main source of B in soils is mineralization of B associated with soil organic matter
- •Plants accumulate boric acid [H₃BO₃] and possibly borate [B(OH)₄⁻]
- Neither H₃BO₃ nor B(OH)₄⁻ are strongly attracted to soil particles so leaching losses are expected

Boron deficiency of corn

Earleaf tissue boron >4-10 ppm is adequate

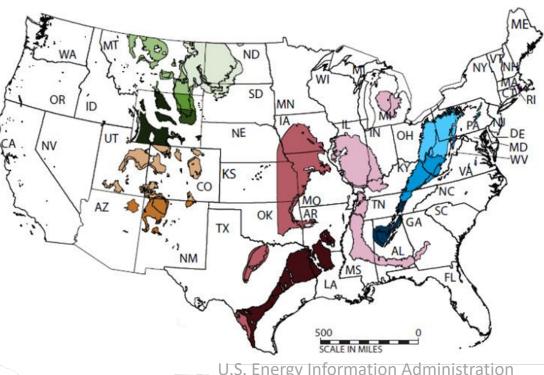

http://cropphysiology.cropsci.illinois.edu/documents/BenderHaegele2013NutrUptakeBetterCrops.pdf

Corn earleaf boron concentrations from 90 soil fertility trials.

	Purdue Research Farm						
Year	ACRE	DPAC	NEPAC	PPAC	SEPAC	SWPAC	TPAC
			Corn ea	rleaf bord	on, ppm		
2006	5	4	4	4	3	7	4
2007	5,5	9, 8	6, 5	8, 9	7, 5	2	7
2008	5,5	N/A	6, 4	4 , 5	4 , 3	6	5
2009	7,8	7,6	5, 5	6, 5	6, <mark>3</mark>	6	7
2010	6,7	N/A	2.2	0 1	<u> </u>	4	4
2011	9	N/A	170/			5	11
2012	N/A	N/A	43%	≤4 p	рш в	N/A	N/A
2013	3	8				4	3
2014	4	N/A	N/A	4	4	3	N/A
2015	4	5	4	2	1, 2	N/A	3
2016	N/A	8, 9	8, 5	5, 4	3	12‡	N/A
2017	N/A	N/A	N/A	5	4	N/A	8
2018	N/A	5	3	2	3	7‡	N/A

‡ Fertilized with 0.5 lb B/acre.

% soils in adequate range decline


A&L Great Lakes Laboratories, Inc.

Boron content of coal

- •116 ppm Great Plains
- •25 ppm Appalachian Region
- •96 ppm Eastern Interior
- Volatile emissions down from 30-70% to 5%

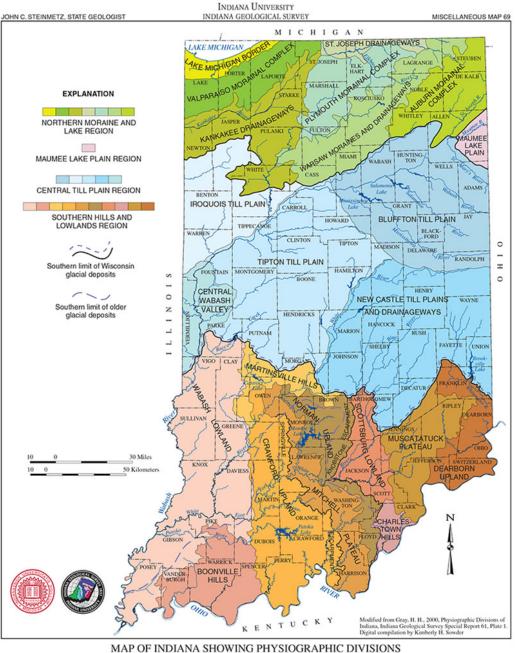
Mosaic marketing claim

"The Key to Maximizing Yield Boron deficiency is widespread, affecting crop production and quality across North America."

Kentucky, Russell Co., 2009 & 2010

Field	20	09	2010		
	Leaf B, ppm Yield, bu/a		Leaf B, ppm	Yield, bu/a	
1	3.8 a	144 c	3.6 b	111 b	
	5.3 a	162 c	13.5 a	164 a	
2	4.3 b	147 cd	3.1 b	161 a	
	6.3 a	160 bc	13.3 a	165 a	

1 lb B/a in 2009 and 1.6 lb B/a in 2010.


https://northcentralfertility.com/proceedings/?action=abstract&id=4227

Boron questions

- Is B availability sufficient for high yielding corn crops
- •Are certain soils or regions more prone to B deficiency

"Generally boron deficiencies are confined to the sandy soils of northern Indiana and to the residual and oldest glacial soils of southern Indiana." Mengel, 1990

https://www.extension.purdue.edu/ extmedia/AY/AY-239.html

By Henry H. Gray 2001

Boron trials 2019

- •Large plot at 7 locations
- B applied as Solubor at 0.2-0.5 lb B/acre in UAN/ATS at sidedress
- •Tissue B of whole plant at V6 and earleaf at silking
- •Grain yield, moisture, and grain B

Leaf tissue 2019, B-ppm

Location	V6	Ear	Earleaf	
		-B	+B	
Blackford	n/a	6	7+	
PPAC	4	6	6†,‡	
SEPAC, F10	2	no trt.	2‡	
SEPAC, G5	4	4	4†,‡	
Shelby	4	5	7‡	
SWPAC	8	6	6‡	

+0.4 lb B/a; +0.2 lb B/a

Diana Salguero

Location	Boron, lb/a	Yield, bu/a	Moisture, %
Blackford	0	214	19.8*
	0.5	213	19.5
	0	176	20.1
PPAC	0.2	177	20.5*
	0.4	177	20.1
PPAC-Rice	0	193	19.2
	0.2	193	19.3
	0	158	18.4
SEPAC	0.2	157	18.1
	0.4	155	18.3
Shelby	0	218	21.4
Зпетру	0.4	221	21.2
SWPAC	0	173	15.5
Diana Salguero	0.4	171	16.1*

Boron fertilizers

- •Do not put boron with any seed under any circumstances!
- •Boron has narrowest range between not enough and too much of any nutrient!
- •Foliar boron can burn too!

Boron toxicity

1.1 lb B/acre soil-applied by mistake

Soil – 3.2 ppm

Tissue – 358 ppm

U.S. Borax – Rio-Tinto

- •Granubor[®], Fertibor[®] 15% B
 - Disodium tetraborate pentahydrate, Na₂B₄O₇·5H₂O
- •Solubor[®] 20.5% B
 - Disodium octaborate tetrahydrate, $Na_2B_8O_{13}$ ·4H₂O

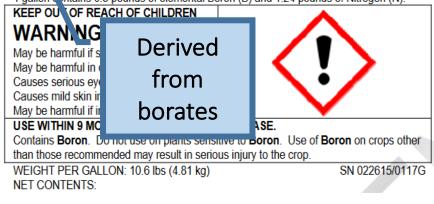
Our mine is the largest open pit mine in California and one of the riches borate deposits on the planet. While boron is present everywhere in the environment, substantial deposits of borates are relatively rare.

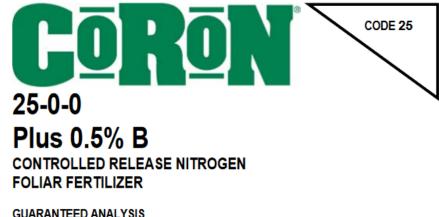
The U.S. Borax boron deposit produces primarily tincal and kernite, which are calcium-free sodium borates. This makes them optimal for use in agriculture.

Mosaic

- •Aspire[®] 58% K₂O, 0.5% B
 - •Sodium borate is highly soluble
 - •Calcium borate is slowly soluble, hydrated calcium borate hydroxide, CaB₃O₄(OH)₃-H₂O

Helena Agri-Enterprises


Plus 5% B


CONTROLLED RELEASE NITROGEN PLUS BORON NUTRITIONAL LIQUID CONCENTRATE

GUARANTEED ANALYSIS

Total Nitrogen (N)	12.00%
6.00% Urea Nitrogen	
6.00% Water Soluble Nitrogen*	
Boron (B)	5.00%

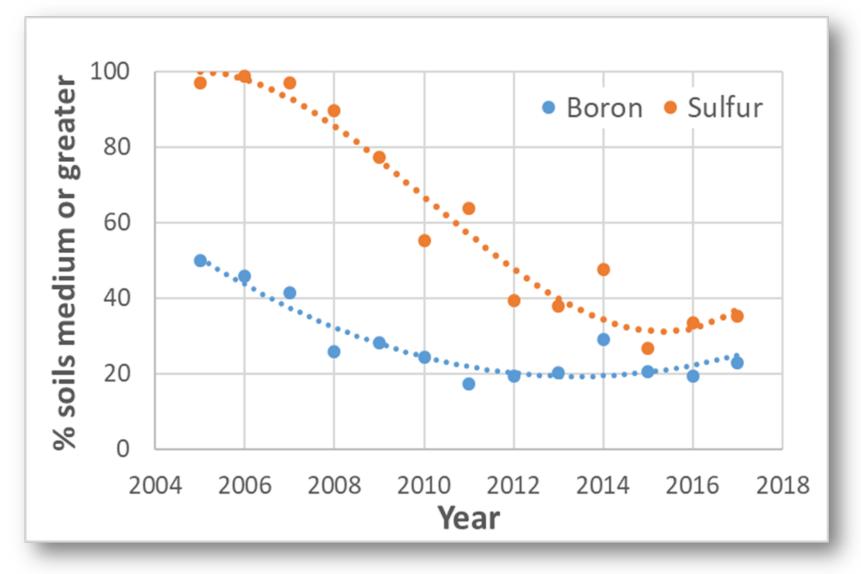
Derived from borates, urea, methylene diurea and methylene ureas. *6.00% Slowly Available Nitrogen from methylene diurea and methylene ureas. 1 gallon optains 0.5 pounds of elemental Boron (B) and 1.24 pounds of Nitrogen (N).

Total Nitrogen (N)	25.00%
18.8% Urea Nitrogen	
6.2% Other Water Soluble Nitrogen*	
Boron (B)	0.50%

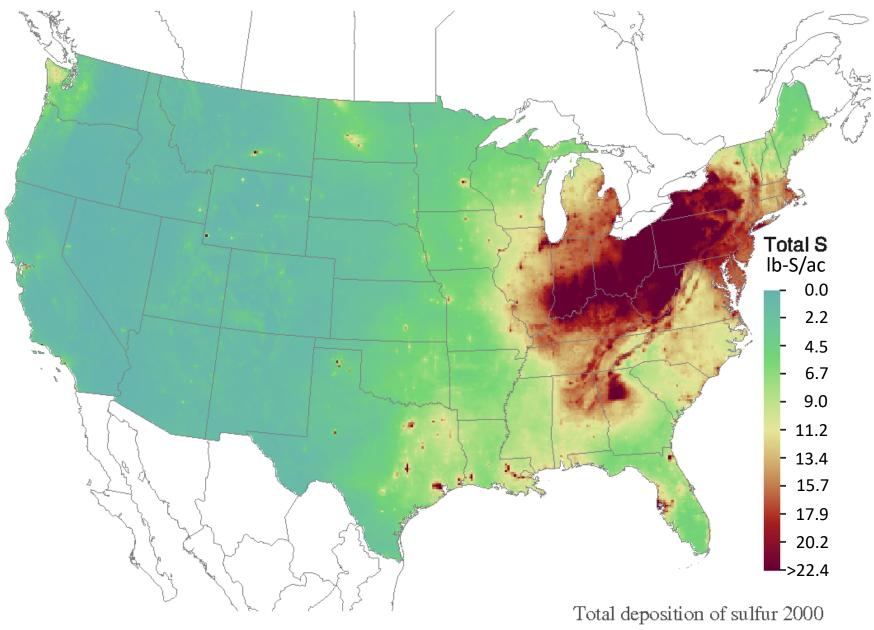
Derive I from urea, methylene diurea, methylene ureas and boracic acid. Chlorine (CI), not more than 0.01%.

*6.2% Sl. vly Available Nitrogen from methylene diurea and methylene ureas.

KEEP OUL OF RE	ACH OF CHILDREN					
WARN NG	Derived					
May be harmful if s	Deriveu					
May be harmful in	from boric					
May be harmful if i						
Causes mild skin ir	aaid					
Causes serious ey		V				
USE WITHIN 9 MC		IASE.				
WARNING: Contain	ns Boron. Do not use on plants	sensitive to Boron. Use of Boron on				
crops other than those recommended may result in serious injury to the crop.						
NET CONTENTS: 2.5 gals. (9.46 L) SN 0915/0816G						
□ 250 gals. (946.25 L)						
□ Bulk						

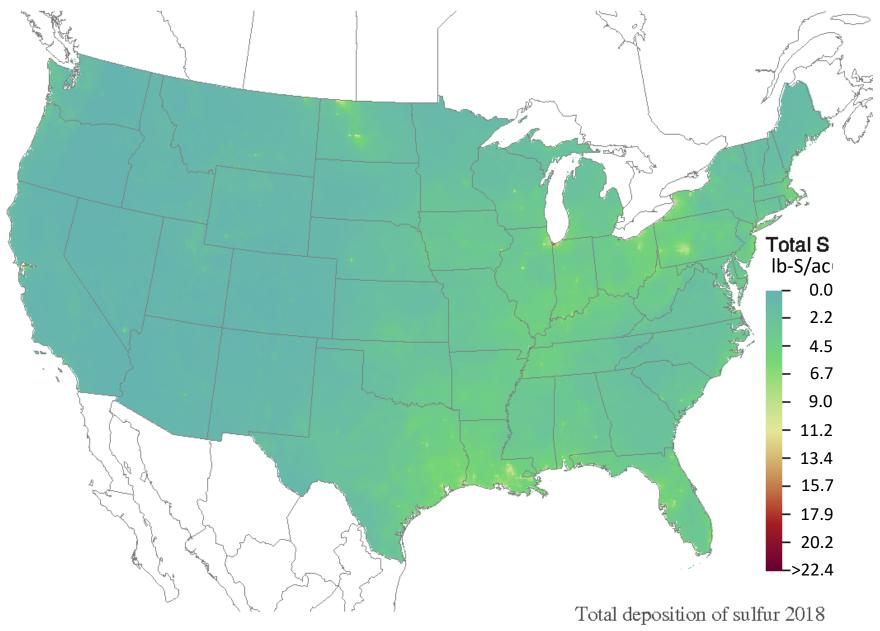

Questions remaining on B?

- •What combination of weather, soil, and cropping conditions result in low B availability to crops?
- •With low tissue B what is the frequency and magnitude of crop response to B?
- •What fertilizer source of B is best if a profitable response to B warrants fertilization?


Update on corn response to sulfur

and share the se

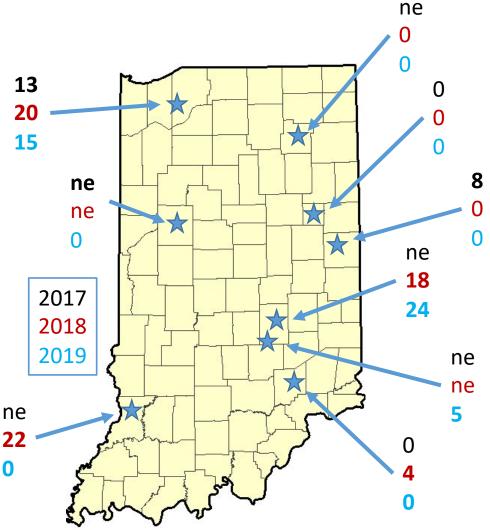
% soils in adequate range decline



A&L Great Lakes Laboratories, Inc.

Source: CASTNET/CMAQ/NADP

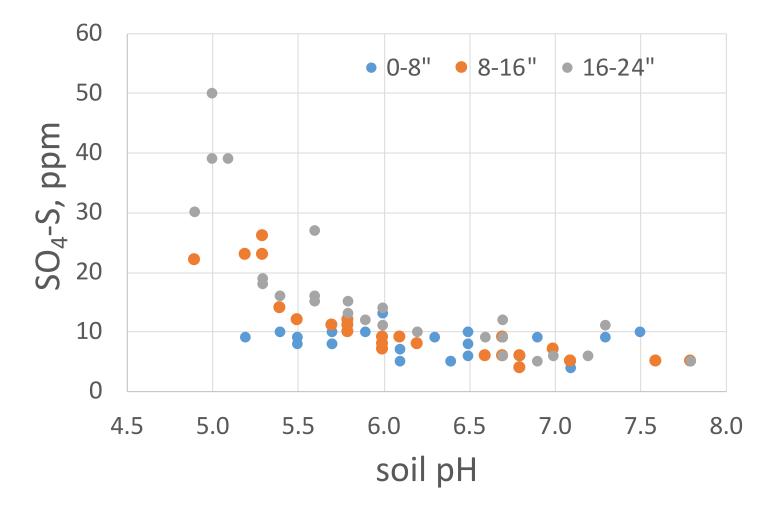
USEPA 08/28/18



USEPA 10/21/19

Corn yield response to S

- Sulfur


 application
 increased yield
 in 9 of 19 trials
- The lowest rate of S in each trial was sufficient (7.5-15 lb/acre)

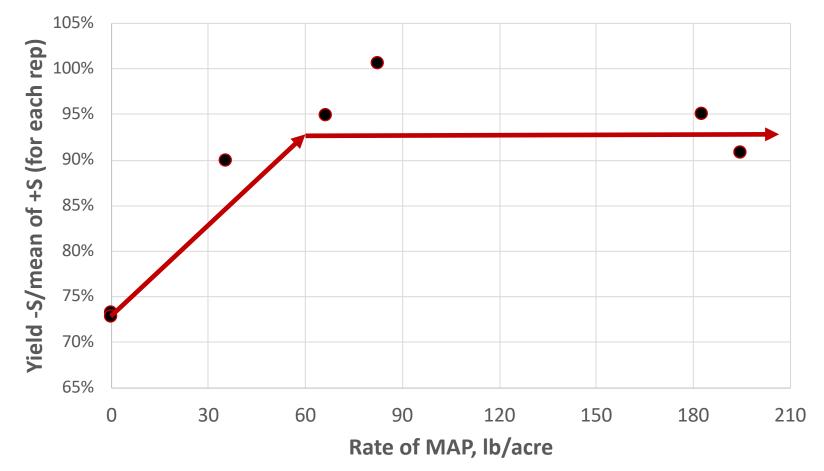
Distribution of sulfate-S in soil

Depth	ACRE	DPAC	NEPAC	PPAC	SEPAC	TPAC
inches	mg SO ₄ -S/kg					
0-8	6 ±1	6 ±1	10 ±1	5 ±1	7 ±2	7 ±1
8-16	4 ±1	4 ±0	6±1	3 ±1	12±4	6 ±2
16-24	3 ±1	4 ±1	5 ±1	3 ±1	19 ±7	7 ±2

Relationship between pH and SO₄-S for SEPAC with depth

Diana Salguero, Meghan Moser

Phosphorus fertilizer as a source of sulfur


- •MAP (11-52-0, 64 samples) 1.3-2.4% S
 - •@75 lb P₂O₅/ac applies **1.9-3.5 lb S/ac (avg. 2.6)**
- •DAP (18-46-0, 53 samples) 1.4-3.3% S
 - •@75 lb P₂O₅/ac applies **2.2-5.5 lb S/ac (avg. 3.0)**

Data thanks to:

Office of Indiana State Chemist

Does fall-applied P fertilizer contribute S to the next corn crop?

Important questions?

- •Frequency and magnitude of responses as a function of soil properties and management practices
- •Contribution of subsoil S and irrigation water in some regions
- •Sulfur availability of purposeful and incidental applications of S in fall and winter