Cover Crops and Nitrogen Cycling

Shalamar Armstrong

Soil Conservation and Management Assistant Professor of Agronomy Purdue University Department of Agronomy

Agronomy COLLEGE OF AGRICULTURE

https://ag.purdue.edu/agry/armstrong-sendlab/

Re-emergence of Cover Crop Adoption

Planting Corn

How much CC biomass Carbon did I generate?

How much N did I conserve in the biomass? How much CC N will be of use to my corn crop and when?

> Should I expect N immobilization and can I adjust management?

Cover Crop Residue

No Question about Cover Crops and Water Quality

Water Quality Impacts: 4R + Cover Crops

- Interseeded Cereal Rye/Radish Mix (Mid Sept.)
- Average cover crop biomass: <u>1,200 lbs/A</u>
- Average shoot N uptake was 59 lbs/A
- **Terminated 2 weeks before planting**

Increase NO₃-N Retention

NO₂-N Loss

Ruffatti et al. (2018) Agricultural Water Management 211:81-88.

Cereal Rye/Radish in Standing Corn Radish/Oats in Soybean Residue

Cereal Rye/Radish in Corn Residue

Watershed Impact of Mass Cover Crop Adoption

Watershed Impact of Mass Cover Crop Adoption

Cereal Rye Impacts on Cash Crop Yield

Soybean Yield

Corn Yield

*Corn following cereal rye with no starter N applied

★ = Corn location **Regional CR-Cash Crop Yield Study** = Soybean location 773 Total Paired Observations from 24 different **Experimental Sites** 430 Corn Paired observations from 20 **Experimental sites** 343 Soybean Paired observations from 18 **Experimental Sites** Average Δ Yield Yield **P-value Treatment** Crop **Mg ha⁻¹ (SE) Control – Cereal Rye** 9.6 (0.183) Control Corn 6% (10 bu/A) < 0.00001 N = 430 pairs**Cereal Rye** 9.0 (0.162) 3.1 (0.049) Control **Soybean** <0.00001 6% (3 bu/A) **N= 343 pairs** 2.9 (0.035) **Cereal Rye**

Cereal Rye Impact on Corn N Uptake

Soil N Demand Synchrony

Calendar Days after Cover Crop Termination

Cereal Residue Nitrogen Tracking N Study

Research Objectives:

- Use 15N techniques to measure the amount of cover crop residue N that is utilized by the subsequent corn and soybean crop.
- Use 15N techniques to quantify the fate of cover crop N.

Cereal Residue Nitrogen Tracking N Study

Time

Cereal Rye (CR) Nitrogen Recovery in Corn and Soybean

Partitioning of Cereal Rye Biomass N Recovery

Distribution of CR Residue N Following Termination

Changes in Nitrogen Availability During the Life Cycle of Cereal Rye

Optimization of Starter N Fertilizer for Corn following Cereal Rye

Houston Miller, Shalamar Armstrong,

James Camberato, and Robert Nielsen.

Determine the optimal starter fertilizer N rate for corn following CR adoption to achieve competitive yield.

09/26/2017 - 10/18/2017 CR planted at 67 kg ha⁻¹

4/13/2018 - 5/7/2018 CR sampling

- Two 1/4m²
 squares from each
 plot.
- CR termination
- Chemical termination combination of glyphosate and saflufenacil.

Cereal Rye Season

CR combustion analyzed for total biomass, carbon, and nitrogen (N).

Soil Sampling at planting. 30 cm depth.

5/9/2018 – 5/25/2018 Corn Planting 79,072 seeds ha⁻¹

Cereal Rye

Site	Biomass (kg ha ⁻¹)		N uptake (kg ha ⁻¹)		C uptake (kg ha ⁻¹)		C:N
SIL							ratio
1	1075.58	B	22.97	В	414.58	В	18.05
2	1083.41	B	19.77	В	414.42	В	20.96
3	1453.61	A	33.65	A	563.32	A	16.74
N- Nitrogen *significance between sites are Average CR biomass =							
C- Carbon			indicated by a different capital 1200 (kg ha				-1)
C:N- Carbon to Nitrogen ratio.			letter.				
1 3 7 7 7 5 5						MERS	

Spring Soil Inorganic N at Corn Planting

Site 1 Nitrogen Uptake CR vs. non-CR

Site 1 Nitrogen Uptake in CR Plots

Site 3 Nitrogen Uptake CR vs. non-CR

Site 3 Nitrogen Uptake in CR plots

Starter N Closing the Corn Yield Gap

 At 1 of 3 sites, CR significantly reduced corn yield (2.4 -9.2 % reduction)

- Within CR treatments, at 3 of 3 sites, adding 56 and 84 kg N ha⁻¹ starter resulted in significantly greater yield (1.3-13.4% greater).
- At 2 of 3 sites, adding 56 kg N ha⁻¹ (50 lbs/A) resulted in equal or greater corn yield relative to the non-CR control and non-CR control with starter N.

Cover Crop Selection-Soybean/Corn Yields

Cereal Rye: 100% CR HV/CR: 80% CR Big Mix: 10% CR Rotation: 0% CR HV: 0% CR

Cover Crop Selection-Continuous Corn Yields

Summary

- There is no question, the inclusion of a cereal rye base mixture increases water quality
- Cereal rye cover crop scavenges N and give it back slowly, where only 7-10% of cereal rye residue N is recovered in the subsequent crop.
- Potential adaptive N management for corn following cereal rye is adding 50-75 lbs of starter N at planting.
- Cover crop selection and rotation with cash crop is another option get achieve competitive corn yields following cover crops.

Questions?

Liankayou

Shalamar Armstrong

Soil Conservation and Management Assistant Professor of Agronomy Purdue University Department of Agronomy sarmstro@purdue.edu

https://ag.purdue.edu/agry/armstrong-sendlab/