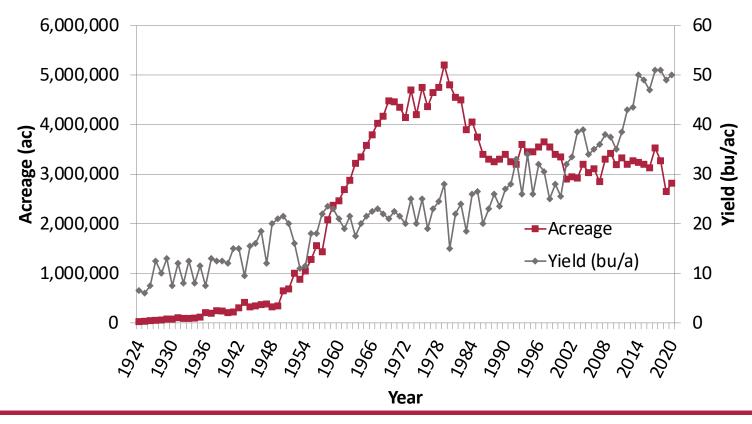


# High Yielding Soybean Production: Perspective from a Mid-south Agronomist

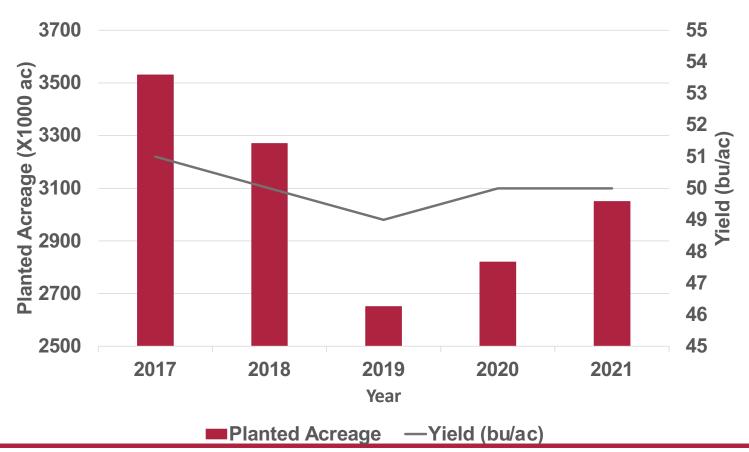
Jeremy Ross, PhD

Extension Agronomist – Soybean/Professor


#### What do I do?

- 100% Extension Appointment
  - Hub for Soybean Production Recommendations/Education
  - Educate Producers, Crop Consultants, Industry Personnel, and other clientele
  - Educate County Extension Agents
  - Soybean/Edamame Research
  - State/Regional/National Presentations
  - Extension Publications/Social Media






### Historical Acreage and Yield





#### 5-Yr Avg. Acreage and Yield





## Factors Associated with Soybean Production

- Soil Fertility
  - Proper soil sampling, soil testing, and fertilization
- Soil pH
  - Optimum soybean production from 6.5 7.0
- Drainage
  - Adequate drainage is essential
- Rotation
  - Increased soybean yields (5 bu/A common)
  - Breaking cycles of diseases, weeds, and insects



## Factors Associated with Soybean Production

- Variety Selection
  - Most important decision
  - High yield potential with good "defensive" package
- Planting Date
  - Earlier plantings have potentially higher yield
- Row Spacing
  - Row spacings of 30 inches or less increase yield
- Pest Control (weed, disease, and insect)
  - Required to maximize yield



# Present/Future Concerns

- High yield production
- Herbicide-resistant weeds
- Fungicide-resistant plant diseases
- Edamame production
- SRVP











2019



Conventional non-GMO



LINK<sup>®</sup> W



2019



#### Soybean Variety Selection

- Most important and most difficult management decision
  - Foundation for the season

When done properly, increase the chance for variety to reach

full yield potential





# Soybean Varieties by Herb. Tech. (2011-2020)

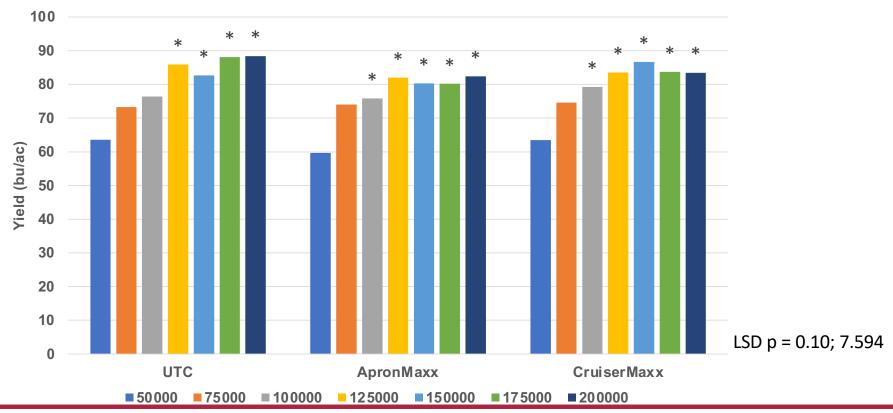
|           | Year |      |      |      |      |      |      |      |      |      |        |
|-----------|------|------|------|------|------|------|------|------|------|------|--------|
| Herb Tech | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Totals |
| RR1       | 107  | 114  | 86   | 65   | 54   | 47   | 42   | 20   | 5    | 10   | 550    |
| RR2       | 25   | 214  | 222  | 208  | 160  | 89   | 34   | 9    | 1    | 3    | 965    |
| LL        | 30   | 36   | 45   | 69   | 72   | 45   | 45   | 47   | 10   | 2    | 401    |
| Conv      | 25   | 20   | 21   | 28   | 34   | 42   | 36   | 26   | 15   | 15   | 262    |
| Xtend     | 0    | 0    | 0    | 0    | 0    | 82   | 145  | 149  | 120  | 100  | 596    |
| LLGT27    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 7    | 5    | 12     |
| Enlist    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 33   | 36   | 69     |



#### **Herbicide Technologies - Soybean**






#### What soybean variety do you recommend?

- 1. Glyphosate/PPO resistant weed issues?
  - Could determine herbicide technology
- 2. What is the soil texture of your field?
- 3. Do you have salt problems?
- 4. Are nematodes a problem?
- 5. Have you had disease problems?
- 6. Etc.....





#### 2018 Seeding Rate X Seed Trt (PT)







#### **Conclusions**

- Minimum plant stand of 75,000 plants/ac can maximize yield
  - MUST BE UNIFORM STAND NO SKIPS
- Lower populations early in season can compensate, more timely pesticide applications
- Better to keep minimum stand late in the season than start over
- "Filling in" with additional seed did not significantly increase yield
- 110K seed/ac = 95% Max Yield; 150K seed/ac = 99%
   Max Yield; 180K = 100% Max Yield





# Glyphosate-resistant Weeds

- Horseweed (2003)
- Common Ragweed (2004)
- Giant Ragweed (2005)
- Palmer Amaranth (2006)
- Johnsongrass (2007)
- Italian Ryegrass (2008)
- Tall Waterhemp (2015)

Herbicide resistant Palmer amaranth populations in 2021:

Glyphosate (Group 9)

ALS (Group 2)

PPO (Group 14)

DNA's (Group 3)

HPPD (Group 27)

VLCFA (Group 15)

Glufosinate (Group 10)







# Management Techniques

- Crop rotation
- Herbicide rotation
- Herbicide combinations
- Rotation of herbicide MOA
- Tillage







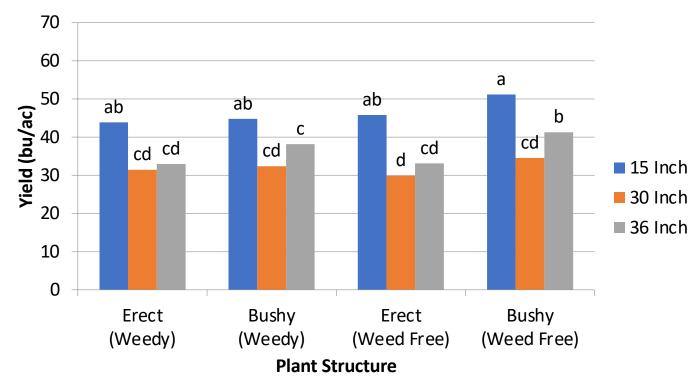








**30 Inch Rows** 

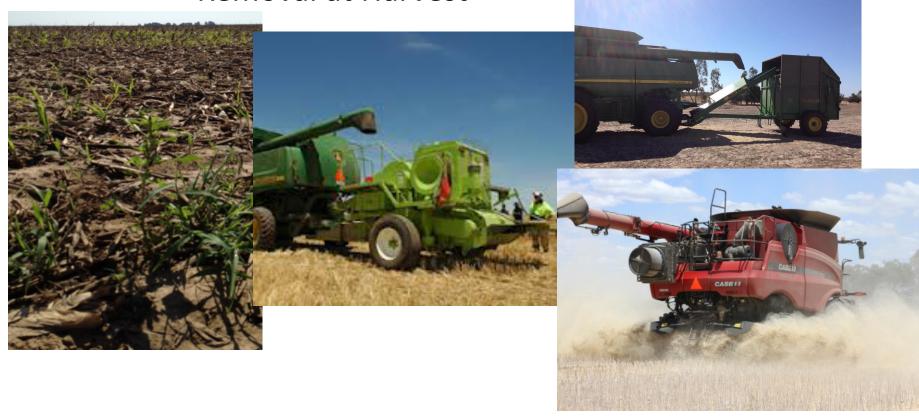



**36 Inch Rows** 





# 2014 Width by Variety (MG IV)




Means followed by same letter are not significantly different (P = 0.10, LSD)





# Seed Destruction and Removal at Harvest







#### HearNPV (Heligen)

- HearNPV is a virus that kills the host while making more virus
- Costs \$3-6/acre
- Only kills budworm and bollworm
  - IDENTIFICATION IS KEY!









#### Confidence in an Application

- Takes 4-6 days to kill, but feeding stops before
- Prior to 4-6 days post application look for:
  - Reduced damage and feeding
  - Larvae moving to the top of the canopy
  - Decreased larval defense response
- After 4-6 days post application <u>ALSO</u> look for:
  - Sweating larvae
  - Liquefied larvae



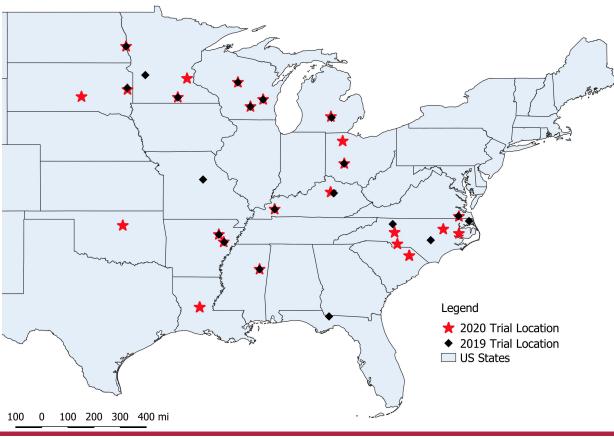






## National Soybean Foliar Fertilizer Research

#### Objectives:


- (1) Identify soybean grain yield response to prophylactic foliar fertilizer application across a broad range of environments
- (2) Determine if foliar fertilizer application changes soybean grain composition
- (3) Conduct economic analyses on the value of these products in U.S. soybean-growing environments.







#### **Trial Overview**



- Small plot field trials at 46 sites in 2019 and 2020
- RCB design with 4-8 reps per site-year
- Treatments were applied in the absence of visual symptoms of nutrient deficiency







#### **Products and Nutrient Rates**

| Treatment<br>Name       | Application<br>Rate     | Cost of<br>Product   | N   | Р   | K   | S    | Mn   | Fe                    | Мо    | Zn   | В    | Other                   |
|-------------------------|-------------------------|----------------------|-----|-----|-----|------|------|-----------------------|-------|------|------|-------------------------|
|                         |                         | USD ha <sup>-1</sup> |     |     |     |      |      | kg ha <sup>-1</sup> . |       |      |      |                         |
| FertiRain               | 28.0 l ha <sup>-1</sup> | \$55                 | 3.1 | 1.0 | 1.0 | 0.6  | 0.02 | 0.03                  | -     | 0.03 | -    | -                       |
| Sure-K                  | 28.0 l ha <sup>-1</sup> | \$48                 | 0.7 | 0.3 | 1.0 | -    | -    | -                     | -     | -    | -    | -                       |
| HarvestMore<br>Ureamate | 2.8 kg ha <sup>-1</sup> | \$12                 | 0.1 | 0.3 | -   | -    | 0.01 | -                     | 0.002 | 0.01 | -    | Ca,<br>Mg, B,<br>Co, Cu |
| Smart B-Mo              | 1.2 l ha <sup>-1</sup>  | \$9                  | -   | -   | -   | -    | -    | -                     | 0.007 | -    | 0.08 | -                       |
| Smart Quatro<br>Plus    | 4.7 l ha <sup>-1</sup>  | \$16                 | -   | -   | -   | 0.04 | 0.09 | -                     | 0.003 | 0.09 | 0.07 | -                       |
| Maximum<br>NPact K      | 14.0 l ha <sup>-1</sup> | \$52                 | 2.1 | -   | 2.1 | -    | -    | -                     | -     | -    | -    | -                       |
| Untreated<br>Control    | -                       | -                    | -   | -   | -   | -    | -    | -                     | -     | -    | -    | -                       |







# **Analysis Methods**

- Mixed-model ANOVA with replication as a random factor
- Kenward-Rogers approximation for degrees of freedom

|         |               | F-value | p-value |  |
|---------|---------------|---------|---------|--|
| Yield   | Treatment (T) | 0.23    | 0.9663  |  |
|         | Site-year (S) | 61.05   | <0.001  |  |
|         | T×S           | 1.00    | 0.4812  |  |
| Protein | Treatment (T) | 1.37    | 0.2248  |  |
|         | Site-year (S) | 557.92  | <0.001  |  |
|         | T×S           | 1.15    | 0.0703  |  |
| Oil     | Treatment (T) | 1.62    | 0.1382  |  |
|         | Site-year (S) | 392.72  | <0.001  |  |
|         | T×S           | 1.17    | 0.0490  |  |







#### Foliar Fertilizers Reduced Profitability (n=46)

| Treatment                | Prod. Cost | Avg Yield | Mean partial profit<br>at soybean grain<br>price of \$15/bu | Mean partial profit at soybean grain price of \$10/bu |  |
|--------------------------|------------|-----------|-------------------------------------------------------------|-------------------------------------------------------|--|
|                          | US\$/ac    | bu/ac     | US\$/ac                                                     | US\$/ac                                               |  |
| <b>Untreated Control</b> |            | 59.4      | 891 a*                                                      | 594 a                                                 |  |
| Smart B-Mo               | \$3.60     | 59.6      | 890 ab                                                      | 592 a                                                 |  |
| HarvestMore UreaMate     | \$4.90     | 59.5      | 887 ab                                                      | 590 a                                                 |  |
| Smart Quatro Plus        | \$6.50     | 58.9      | 878 ab                                                      | 583 ab                                                |  |
| FertiRain                | \$22.25    | 59.5      | 871 ab                                                      | 573 b                                                 |  |
| Sure-K                   | \$19.40    | 59.3      | 870 ab                                                      | 573 b                                                 |  |
| Maximum NPact K          | \$21.00    | 59.2      | 867 b                                                       | 571 b                                                 |  |

<sup>\*</sup>Means not sharing common letters within each column denote statistical differences among treatments ( $\alpha = .05$ ). Bonferroni adjustments were used to adjust for multiplicity.







# Comparison of Fertilizer and Fuel Costs in 2021 versus 2022 for rice, soybean, and corn.

| Input                       | Rice<br>2021 | Rice<br>2022 | Soybean<br>2021 | Soybean<br>2022 | Corn<br>2021 | Corn<br>2022 |
|-----------------------------|--------------|--------------|-----------------|-----------------|--------------|--------------|
| Nitrogen (urea, 46-0-0)     | \$53.63      | \$140.25     |                 |                 | \$70.69      | \$184.88     |
| Phosphate (0-46-0)          | \$15.44      | \$38.06      | \$15.98         | \$39.38         | \$31.06      | \$76.56      |
| Potash (0-0-60)             | \$14.75      | \$41.25      | \$14.75         | \$41.25         | \$19.18      | \$53.63      |
| Diesel, Pre-Post<br>Harvest | \$6.98       | \$10.24      | \$5.53          | \$11.29         | \$6.70       | \$10.89      |
| Diesel, Harvest             | \$3.24       | \$5.27       | \$3.24          | \$5.27          | \$3.24       | \$5.27       |
| Irrigation Energy Cost      | \$56.69      | \$86.81      | \$22.68         | \$36.85         | \$26.46      | \$42.99      |
|                             | \$150.73     | \$321.88     | \$62.18         | \$134.04        | \$157.33     | \$374.22     |
| Increased Costs \$1         |              | l.15         | \$71            | .86             | \$216        | 5.89         |

- Rice 330 lbs urea, 87 lbs phosphate, 100 lbs potash
- Soybean 90 lbs phosphate, 100 lbs potash
- Corn 435 lbs urea, 175 lbs phosphate, 130 lbs potash
- Diesel price of \$1.60 in 2021; \$2.60 in 2022



# Arkansas ROW CROP VERIFICATION















# What is the Soybean Research Verification Program?

- Established in 1983
  - Funded by Arkansas Soybean Promotion Board with checkoff monies
- Interdisciplinary effort
- Verify research-based recommendations
- Improving profitability of Arkansas soybean production





#### **Objectives**

- To verify research-based recommendations
- To develop a database for economic analysis
- To demonstrate that consistently high yields can be produced
- To identify specific problems/opportunities
- Promote timely implementation of cultural/management practices
- Provide training





#### **SRVP Field selection**

- Large enough to represent actual field production
- Represent a major soil texture in county
- Adequate surface drainage





## **Implementation**

- All production practices implemented at cooperator's expense
- Extension computerized programs used to make recommendations
  - Variety Selector, Irrigation Scheduler, etc.
- Complete records of field operations maintained



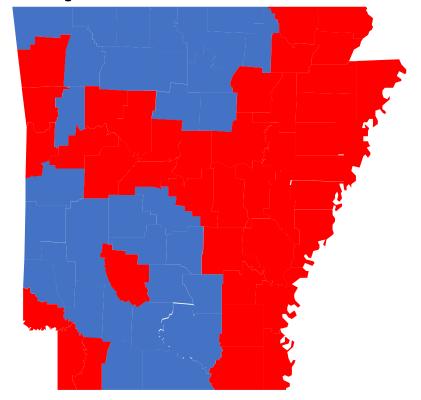


#### **SRVP Coordinators**



Chris Elkins North Arkansas

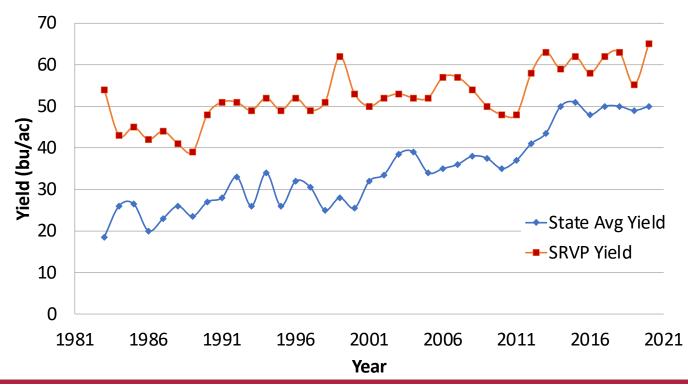



Chad Norton
South Arkansas





# Counties that have participated in SRVP


- 600+ commercial soybean fields
- 41 counties







# State Avg. Soybean Yield vs. SRVP Avg. Yield

















### Impacts of the SRVP

- Variety selection
- Timely practices
  - Irrigation, pesticide application, harvest, etc.
- IPM practices
- Economic database
- In-field training





### Arkansas Soybean Yield Challenge

- Funded by Arkansas Soybean Promotion Board and administrated by Arkansas Soybean Association
- Started in 1999
- Changed to "Grow for the Green" Yield Contest in 2007
- Added "Race for 100" in 2007
  - 100 bu/a contest
- Divided entries into "Production Systems" in 2011
  - Early Season
  - Full Season
  - Double Crop
- Divided entries into geographical divisions in 2013









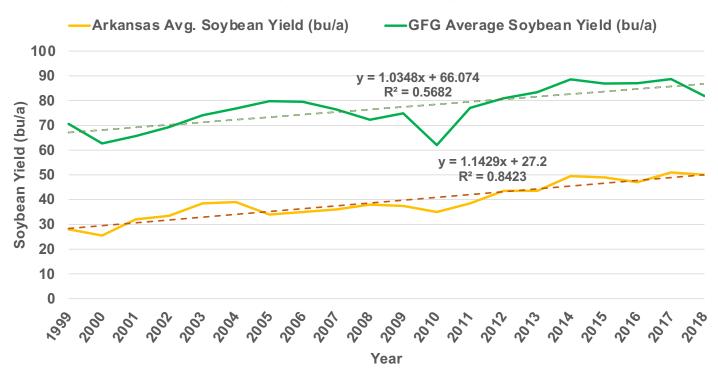
#### **Arkansas Soybean Production Divisions**

- Northeast Delta: Mississippi, Crittenden and East of Crowley's Ridge in Clay, Greene, Craighead, Poinsett, and Cross Counties
- 2. Northeast: Randolph, Lawrence and West of Crowley's Ridge in Clay, Greene, Craighead, Poinsett. and Cross Counties
- White River Basin: Independence, Jackson, Woodruff, White, and Monroe Counties
- 4. Central & Grand Prairie: Pulaski, Lonoke, Prairie, and Arkansas Counties
- East Central Delta: St. Francis, Lee, Phillips, and Desha (Snow Lake Area) Counties
- Southeast Delta: Jefferson, Lincoln, Drew, Ashley,
   Chicot, and Desha Counties
- 7. Western: Remainder of the state
- 8. Conventional Division: Entire State








#### Field Criteria

- Fields must be located within the land boundaries of Arkansas
- Limited to one producer/one division/one field
- Harvest area must consist of a minimum of five (5) contiguous acres and a maximum of seven (7) contiguous acres
- Harvest area must have four (4) straight sides, and harvest area must have four (4) right angles
- Field must have been planted to soybeans in at least one of the last 3 production years, and paid appropriate checkoff





#### Avg. Arkansas Soybean Yield vs. Grow for the Green Avg. Soybean Yield (1999-2018)







### **Production Practices**

| Year | No.<br>Participants | Avg. Yield<br>(bu/a) | Avg. Planting<br>Date | Avg.<br>Irrigations | Insecticide<br>Application | Fungicides<br>Application |
|------|---------------------|----------------------|-----------------------|---------------------|----------------------------|---------------------------|
| 1999 | 7                   | 70.7                 | May-13                | 5.2                 | N/A                        | N/A                       |
| 2000 | 10                  | 62.8                 | May-14                | 9.6                 | N/A                        | N/A                       |
| 2001 | 9                   | 65.7                 | Apr-31                | 6.7                 | 1                          | 1                         |
| 2002 | 6                   | 69.3                 | May-6                 | 4.0                 | 3                          | 2                         |
| 2003 | 8                   | 74.1                 | May-4                 | 3.3                 | 0                          | 3                         |
| 2004 | 7                   | 76.8                 | May-4                 | 6.2                 | 2                          | 5                         |
| 2005 | 10                  | 79.8                 | May-1                 | 5.2                 | 2                          | 5                         |
| 2006 | 7                   | 79.5                 | Apr-26                | 6.0                 | 1                          | 4                         |
| 2007 | 18                  | 76.4                 | May-8                 | 5.1                 | 9                          | 13                        |
| 2008 | 10                  | 72.3                 | May-17                | 4.7                 | 7                          | 10                        |





### **Production Practices**

| Year      | No.<br>Participants | Avg. Yield<br>(bu/a) | Avg. Planting<br>Date | Avg.<br>Irrigations | Insecticide<br>Application | Fungicides<br>Application |
|-----------|---------------------|----------------------|-----------------------|---------------------|----------------------------|---------------------------|
| 2009      | 10                  | 74.9                 | May-4                 | 4.8                 | 6                          | 9                         |
| 2010      | 12                  | 62.0                 | Apr-14                | 6.6                 | 8                          | 9                         |
| 2011 (ES) | 10                  | 86.8                 | Apr-8                 | 8.2                 | 5                          | 8                         |
| 2011 (FS) | 6                   | 71.2                 | May-7                 | 6.4                 | 5                          | 6                         |
| 2011(DC)  | 3                   | 77.3                 | Jun-8                 | 5.5                 | 2                          | 2                         |
| 2012 (ES) | 15                  | 89.1                 | Apr-13                | 7.1                 | 8                          | 13                        |
| 2012 (FS) | 6                   | 79.3                 | May-9                 | 9.7                 | 3                          | 5                         |
| 2012 (DC) | 8                   | 65.1                 | May-29                | 5.8                 | 5                          | 6                         |





### **Production Practices**

| Year | No.<br>Participants | Avg. Yield<br>(bu/a) | Avg. Planting<br>Date | Avg.<br>Irrigations | Insecticide<br>Application | Fungicides<br>Application |
|------|---------------------|----------------------|-----------------------|---------------------|----------------------------|---------------------------|
| 2013 | 58                  | 83.5                 | May-4                 | 6.7                 | 46                         | 52                        |
| 2014 | 50                  | 88.6                 | Apr-28                | 5.1                 | 30                         | 40                        |
| 2015 | 38                  | 86.9                 | Apr-27                | 6.5                 | 26                         | 30                        |
| 2016 | 44                  | 87.0                 | Apr-26                | 6.1                 | 22                         | 36                        |
| 2017 | 53                  | 88.7                 | Apr-16                | 4.8                 | 39                         | 46                        |
| 2018 | 40                  | 81.8                 | Apr-23                | 5.7                 | 17                         | 31                        |
| 2019 | 32                  | 87.8                 | May-4                 | 4.0                 | 17                         | 24                        |
| 2020 | 33                  | 82.7                 | May-1                 | 5.4                 | 17                         | 28                        |







| Year | Name             | Variety       | Planting<br>Date | Seeding Rate<br>(seed/a) | Row Spacing (inches) | Yield (bu/a)<br>13% |
|------|------------------|---------------|------------------|--------------------------|----------------------|---------------------|
| 2013 | Matt Miles       | Asgrow AG4632 | Apr-23           | 170,000                  | 38-twin              | 107.6               |
| 2013 | Eddie Tackett    | Pioneer 94Y70 | May-13           | 150,000                  | 30                   | 104.8               |
| 2013 | Nelson Crow      | Pioneer 93Y92 | Apr-24           | 145,000                  | 30                   | 100.8               |
| 2014 | David Bennett    | Asgrow AG4632 | Apr-22           | 150,000                  | 38                   | 112.0               |
| 2014 | Sherrie Miles    | Pioneer 48T53 | Apr-23           | 157,000                  | 38-twin              | 106.5               |
| 2014 | Matt Miles       | Pioneer 45T11 | Apr-18           | 157,000                  | 38-twin              | 100.6               |
| 2015 | Perry Galloway   | Pioneer 46T21 | Apr-30           | 140,000                  | 38-twin              | 108.8               |
| 2015 | Matt Miles       | Pioneer 47T36 | Apr-4            | 160,000                  | 38-twin              | 108.7               |
| 2015 | Charles Galloway | Asgrow 4232   | Apr-6            | 140,000                  | 38"-twin             | 100.9               |







| Year | Name                | Variety       | Planting<br>Date | Seeding Rate<br>(seed/a) | Row Spacing (inches) | Yield (bu/a)<br>13% |
|------|---------------------|---------------|------------------|--------------------------|----------------------|---------------------|
| 2016 | James Wray          | Pioneer 47T36 | Apr-12           | 125,000                  | 38-twin              | 118.8               |
| 2016 | James E. Wray, Jr.  | Pioneer 47T36 | Apr-9            | 125,000                  | 38-twin              | 109.7               |
| 2016 | Barbara Wray        | Pioneer 47T36 | Apr-8            | 125,000                  | 38-twin              | 109.8               |
| 2016 | Michael Taylor, Jr. | Asgrow 47X6   | Apr-8            | 145,000                  | 30                   | 101.3               |
| 2016 | Martin Henry        | Armor 48-D24  | Apr-5            | 165,000                  | 30                   | 113.9               |
| 2016 | Layne Miles         | NK S47-K5     | May-6            | 160,000                  | 38-twin              | 101.0               |







| Year | Name               | Variety                | Planting<br>Date | Seeding Rate<br>(seed/a) | Row Spacing (inches) | Yield (bu/a)<br>13% |
|------|--------------------|------------------------|------------------|--------------------------|----------------------|---------------------|
| 2017 | James E. Wray, Jr. | Asgrow AG46X6          | Apr-12           | 125,000                  | 38-twin              | 103.8               |
| 2017 | James Wray         | Asgrow AG46X6          | Apr-10           | 125,000                  | 38-twin              | 105.9               |
| 2017 | Billy Wayne Tripp  | Asgrow AG46X6          | Aprr-12          | 145,000                  | 30-twin              | 100.5               |
| 2017 | Mary Galloway      | Hefty H49X7s           | Apr-10           | 140,000                  | 15                   | 107.6               |
| 2017 | Perry Galloway     | Hefty H48X7            | Apr-12           | 140,000                  | 15                   | 108.9               |
| 2017 | Jason Berry        | Pioneer P46A16         | Apr-5            | 140,000                  | 38-twin              | 102.9               |
| 2017 | John Newkirk       | Asgrow AG46X6          | Apr-4            | 136,000                  | 30                   | 104.0               |
| 2017 | Matt Miles         | Pioneer P47T36         | Apr-8            | 150,000                  | 38-twin              | 105.0               |
| 2017 | Layne Miles        | Pioneer P47T36         | May-29           | 150,000                  | 38-twin              | 108.1               |
| 2018 | William Palsa      | Local Seed<br>LS4565XS | Apr-21           | 150,000                  | 7.5                  | 107.4               |





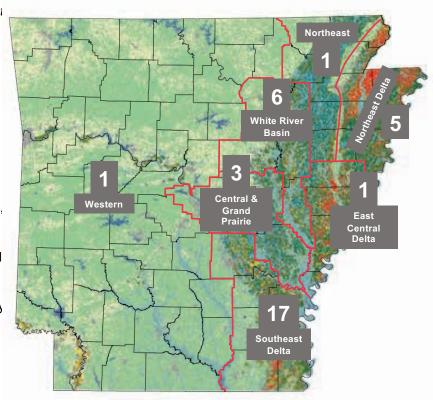


| Year | Name          | Variety         | Planting<br>Date | Seeding Rate<br>(seed/a) | Row Spacing (inches) | Yield (bu/a)<br>13% |
|------|---------------|-----------------|------------------|--------------------------|----------------------|---------------------|
| 2019 | Matt Miles    | Pioneer P48A60X | Apr-22           | 155,000                  | 38-twin              | 120.533             |
| 2019 | Billy Garner  | Pioneer P48A60X | May-15           | 155,000                  | 38-twin              | 116.636             |
| 2019 | Drew Counce   | Pioneer P46A16R | Apr-25           | 140,000                  | 30                   | 103.883             |
| 2019 | Sherrie Miles | Pioneer P48A60X | Apr-29           | 150,000                  | 38-twin              | 101.007             |
| 2019 | Layne Miles   | Pioneer P48A60X | May-1            | 155,000                  | 38-twin              | 117.251             |
| 2019 | Mark Wetly    | Pioneer P48A60X | Apr-24           | 140,000                  | 38-twin              | 103.702             |
| 2019 | Brandon Cain  | NK S45-J3X      | Apr-3            | 170,000                  | 30                   | 100.200             |








| Year | Name            | Variety         | Planting<br>Date | Seeding Rate<br>(seed/a) | Row Spacing (inches) | Yield (bu/a)<br>13% |
|------|-----------------|-----------------|------------------|--------------------------|----------------------|---------------------|
| 2020 | Matt Miles      | Pioneer P47A64X | Apr-10           | 155,000                  | 38-twin              | 116.858             |
| 2020 | Ronnie Ragsdell | Pioneer P48A60X | Apr-10           | 140,000                  | 30                   | 104.067             |





#### **Arkansas Soybean Production Divisions**

- Northeast Delta: Mississippi, Crittenden and East of Crowley's Ridge in Clay, Greene, Craighead, Poinsett, and Cross Counties
- 2. Northeast: Randolph, Lawrence and West of Crowley's Ridge in Clay, Greene, Craighead, Poinsett, and Cross Counties
- White River Basin: Independence, Jackson, Woodruff, White, and Monroe Counties
- 4. Central & Grand Prairie: Pulaski, Lonoke, Prairie, and Arkansas Counties
- East Central Delta: St. Francis, Lee, Phillips, and Desha (Snow Lake Area) Counties
- Southeast Delta: Jefferson, Lincoln, Drew, Ashley Chicot, and Desha Counties
- 7. Western: Remainder of the state
- 8. Conventional Division: Entire State







### **GFTG Summary/Conclusions**

- Yield trends for Arkansas Sate Avg. Yield and GFG Avg. Yield are similar across years
- Many producers follow Univ. of Ark. production recommendations
- Increase in irrigations frequency over years
  - Weather dependent
- Increase in insecticide/fungicide application
  - Fungicide application for plant health?
- All 100 bu/a winners on wide-row (twin-row system)
- Majority of fields in rotation with corn (little rice and soybean/soybean)
- Majority of fields are silt loam in texture
- Economic data is being analyzed





### Questions



