

Our Cropping System:

PRODUCTIVE & SUSTAINABLE

-5th Generation family farm -North Central Indiana -Continuous No-Till since 1989 -7200 acres Corn/Soybean Rotation -20 years cover crops -1 acre grid management w/ full VRT

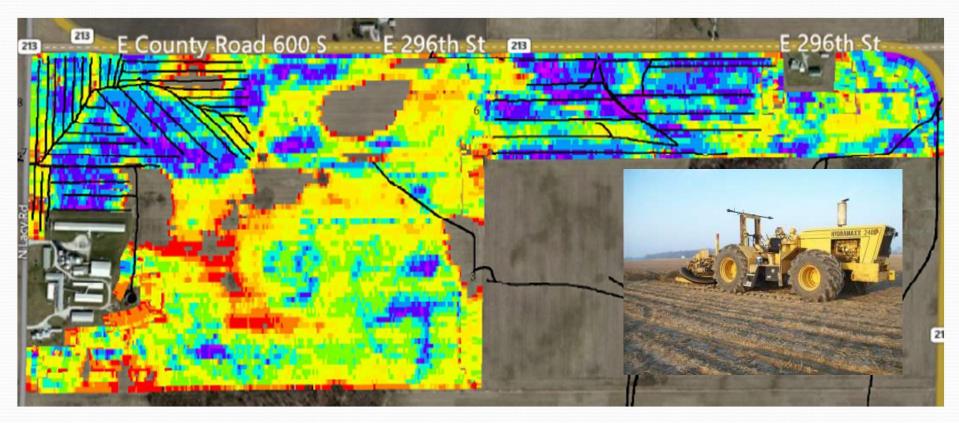
> Conservation is the best economic model We are accountable for what leaves our farm

> > We are a Legacy Farm

Healthy Soil is a System

- No-Till (infiltration/OM/cover/biology)
- Cover Crops (rooting/temp/OM/feed biology)
- Soil Carbon/Soil Health
- Drainage (Managing Air/Water)
- Soil Balance (Proper Chemistry-Structure)
- VRT N, P, K , Seed etc.
- VRT Lime/Gypsum/amendments/Litter/Manure
- Variety Selection (Plant health and Yield)
- Integrated Pest Management (IPM)
- On Farm Testing Economic Tracking

Steps To Manage Soil Quality:


• #1 Continuous No-Till – not rotational

- Eliminate catastrophic tillage events
- Allow soil to build structure and biology
- NO Erosion, NO Bare Soil, STOP leaching of nutrients, Manage Infiltration

Stop Soil Degredation/Increase Soil Carbon Build a SOIL HEALTH SYSTEM

Step #2 Drainage

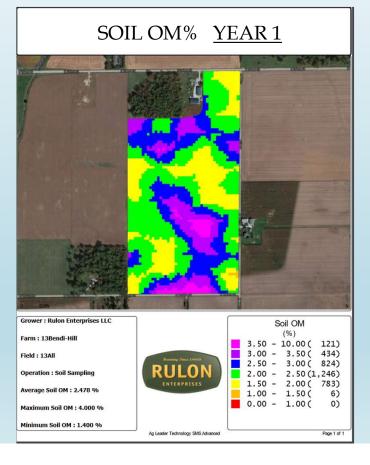
• Drainage is Foundational to No-till and Soil Health

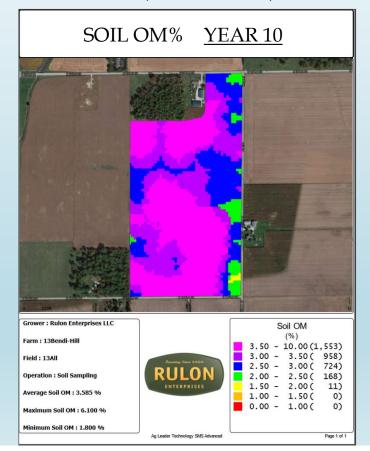
Step #3 Manage Fertility:

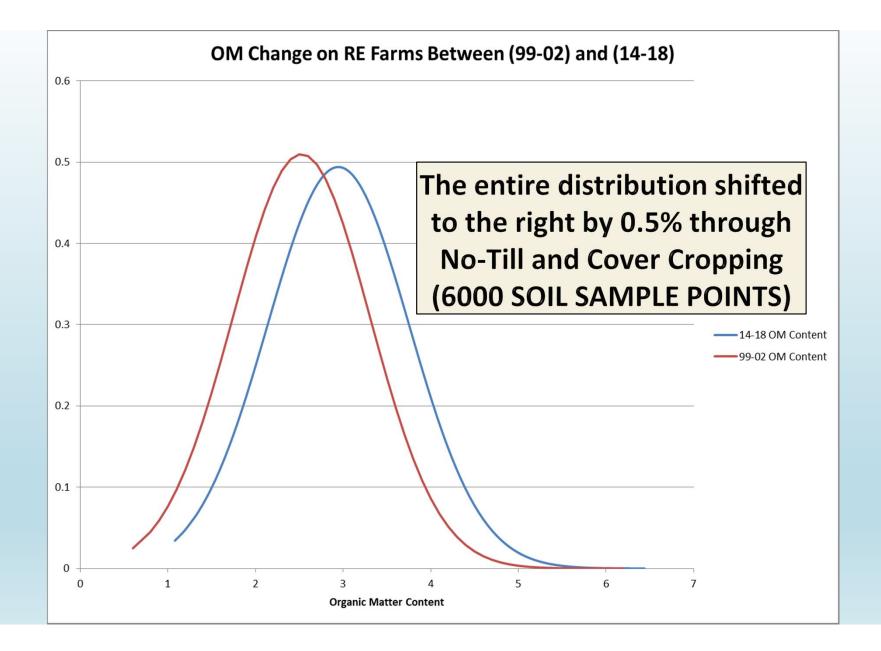
- 1 Acre grid Fertility
- Hi-Cal Lime/Gypsum (Where Mg Lime has been over used)
- Balanced Soil is More Stable

Step #4 Cover Crops Manage for long term Soil Health/Build OM - FAST

BUILDING SOIL HEALTH REQUIRES CARBON CAPTURE


ALL


CAN WE INCREASE SOIL CARBON?



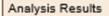
PROVEN CARBON CAPTURE

Organic Matter Average + 1.1% (0.1%/yr) 2.47 (1.4 to 4.0) 3.58 (1.8 to 6.1)

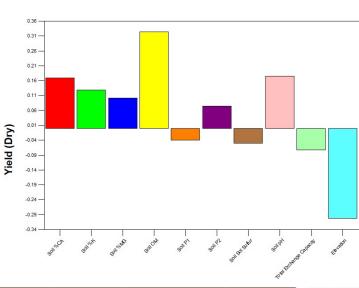
What's The Connection?

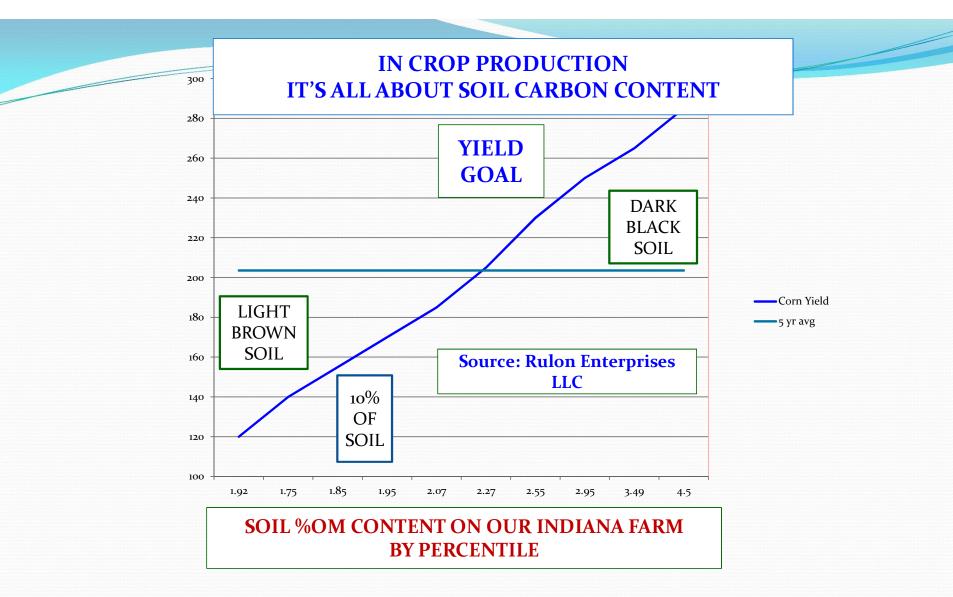
Analysis Description

Generates a correlation table for selected attribu Rulon Enterprises | 02HartleyPlace | 02Hartley Analysis Results | Corn | CORN | NO Pest | Inst Multi-Year Averages Analysis


Correlation Analysis:

MG has a fairly strong negative correlation


OM and TEC both have strong positive correlation


What does that mean?

- %MG decrease = yield increases
- OM or TEC increase = yield increases

ATTRIBUTE	Soil %CA	Soil %K	Soil %MG	Soil OM	Soil P1	Soil P2	Soil Sol Sulfur	Soil pH	Total Exchange Capacity	Elevation	Estimated Volume (Dry)	Moisture
	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
Soil %CA	1.000	0.618	0.597	-0.018	0.182	0.192	-0.294	0.936	-0.605	-0.120	-0.272	-0.120
Soil %K	0.618	1.000	0.311	0.105	0.363	0.356	-0.577	0.600	-0.592	-0.298	-0.072	-0.139
Soil %MG	0.597	0.311	1.000	-0.102	0.100	0.132	-0.308	0.778	-0.407	-0.160	-0.384	-0.125
Soil OM	-0.018	0.105	-0.102	1.000	0.140	0.226	-0.051	-0.091	0.487	-0.534	0.449	-0.354
Soil P1	0.182	0.363	0.100	0.140	1.000	0.987	0.011	0.291	0.123	-0.124	0.244	-0.338
Soil P2	0.192	0.356	0.132	0.226	0.987	1.000	0.010	0.297	0.183	-0.166	0.281	-0.397
Soil Sol Sulfur	-0.294	-0.577	-0.308	-0.051	0.011	0.010	1.000	-0.291	0.595	0.059	0.111	0.054
Soil pH	0.936	0.600	0.778	-0.091	0.291	0.297	-0.291	1.000	-0.576	-0.147	-0.317	-0.147
Total Exchange Capacity	-0.605	-0.592	-0.407	0.487	0.123	0.183	0.595	-0.576	1.000	-0.099	0.503	-0.230
Elevation	-0.120	-0.298	-0.160	-0.534	-0.124	-0.166	0.059	-0.147	-0.099	1.000	-0.092	0.123
Estimated Volume (Dry)	-0.272	-0.072	-0.384	0.449	0.244	0.281	0.111	-0.317	0.503	-0.092	1.000	-0.274
Moisture	-0.120	-0.139	-0.125	-0.354	-0.338	-0.397	0.054	-0.147	-0.230	0.123	-0.274	1.000

1 Acre Grid Soil Samples

Whole farm spatial fertility Record Since 1996

1 Acre Grids = 80% reliable

Invest the Money and do it right.

Resolution = Value

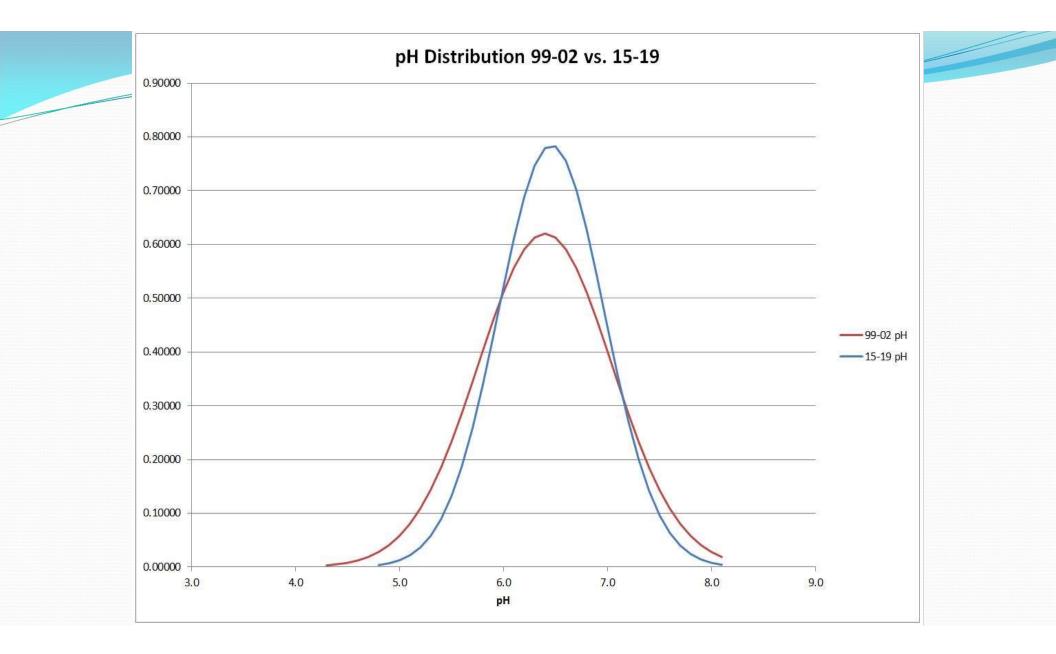
Input Management and Planning

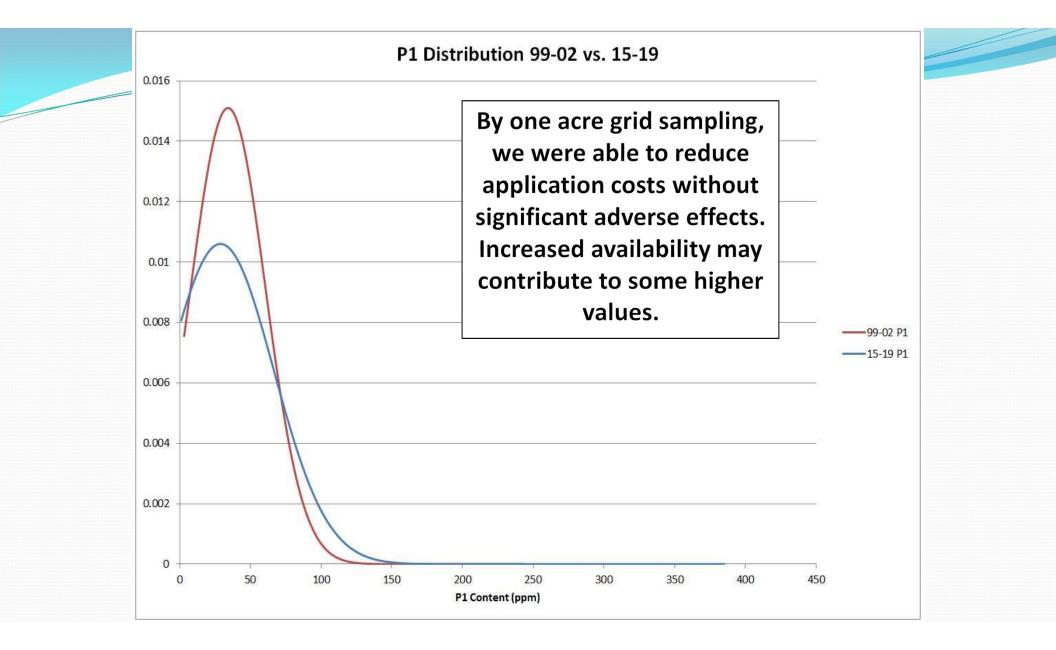
More than P, K, Lime , Seed, Gypsum, N can't do well with less than 1/acre

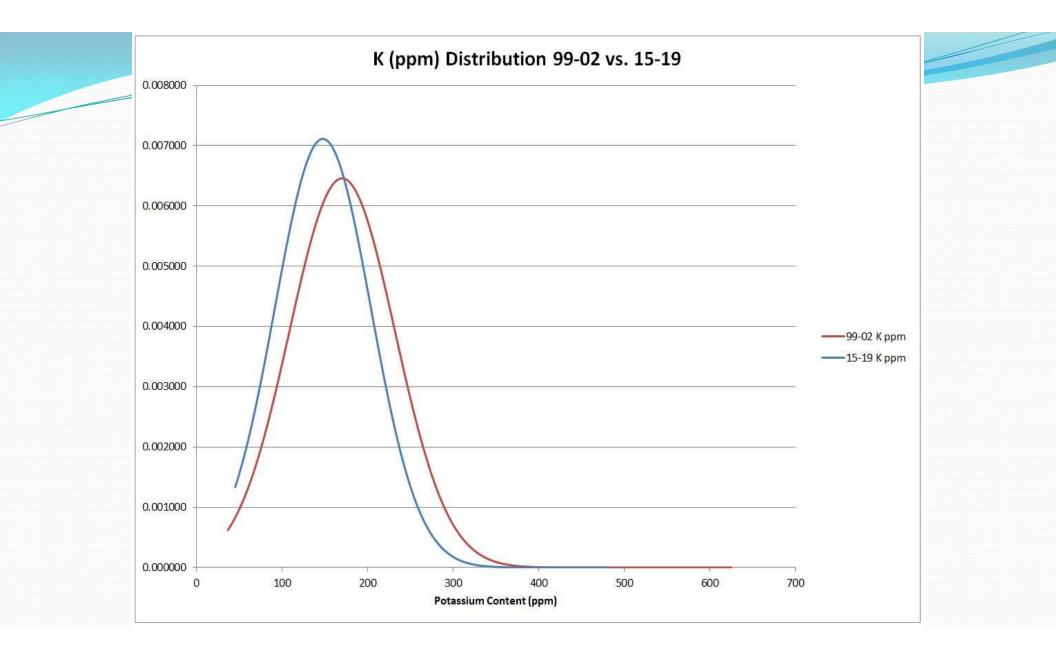
Yield Correlations and Tracking

= Farm Specific Recs

Prediction and Validation


Manage Productivity, Health and Balance of Soil




Soil Sample Percentile Breakdown 6000 Samples 2015-2019

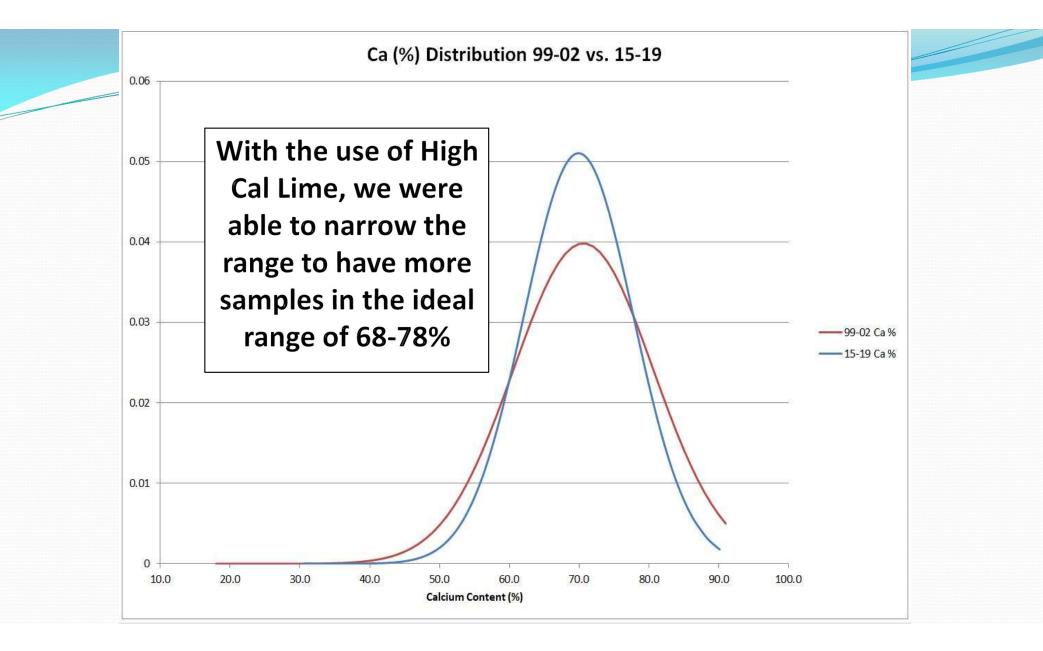
96	TEC	pН	OM	N lb/ac	5 ppm	Easy P P205	P1 ppm	Easy P ppm	kppm	ca %	mg%	К%	na %	Other %	H %
5%	10.36	5.6	1.92	58	7	46	4	10	77	54.68	7.6	1.3	0.32	4.1	0
10%	11.23	5.8	2.07	61	8	60	6	13	86	59.95	8.37	1.47	0.38	4.3	0
15%	11.95	5.9	2.19	64	8	64	14	7	93	62.89	8.93	1.59	0.41	4.4	0
20%	12.54	6	2.28	66	9	73	9	16	100	64.81	9.44	1.68	0.45	4.5	1.5
25%	13.05	6.1	2.36	67	10	82	10	18	107	66.4	9.93	1.77	0.48	4.6	3
30%	13.62	6.2	2.45	69	10	87	12	19	112	67.45	10.4	1.86	0.51	4.7	4.5
35%	14.15	6.3	2.54	71	10	96	13	21	118	68.46	10.84	1.93	0.53	4.7	4.5
40%	14.67	6.3	2.64	73	11	105	15	23	124	69.38	11.31	2.02	0.56	4.8	6
45%	15.22	6.4	2.75	75	11	115	17	25	132	70.26	11.75	2.11	0.59	4.9	7.5
50%	15.79	6.5	2.85	77	12	128	19	28	138	71.01	12.2	2.19	0.61	4.9	7.5
55%	16.35	6.5	2.96	79	13	142	22	31	145	71.92	12.64	2.29	0.64	5	9
60%	17.07	6.6	3.07	81	13	156	25	34	152	72.61	13.12	2.39	0.67	5.1	10.5
65%	17.81	6.7	3.19	82	14	174	29	38	160	73.49	13.69	2.49	0.71	5.1	10.5
70%	18.6	6.7	3.31	83	16	192	34	42	169	74.29	14.27	2.6	0.75	5.2	12
75%	19.58	6.8	3.47	85	19	224	41	49	178	75.09	14.89	2.74	0.79	5.2	13.5
80%	20.64	6.9	3.64	86	30	252	50	55	190	76.02	15.57	2.87	0.85	5.4	15
85%	21.91	7	3.84	88	80	293	65	64	204	77.16	16.51	3.05	0.91	5.6	18
90%	23.6	7.1	4.09	91	149	357	94	78	222	78.5	17.66	3.31	0.98	5.8	21
95%	26.44	7.3	4.48	95	236	467	0	102	250	80.51	19.75	3.75	1.1	6.2	27
100%	74.7	8.1	16.36	128	5978	3412	0	745	482	90.15	30.18	7.42	6.45	7.8	49

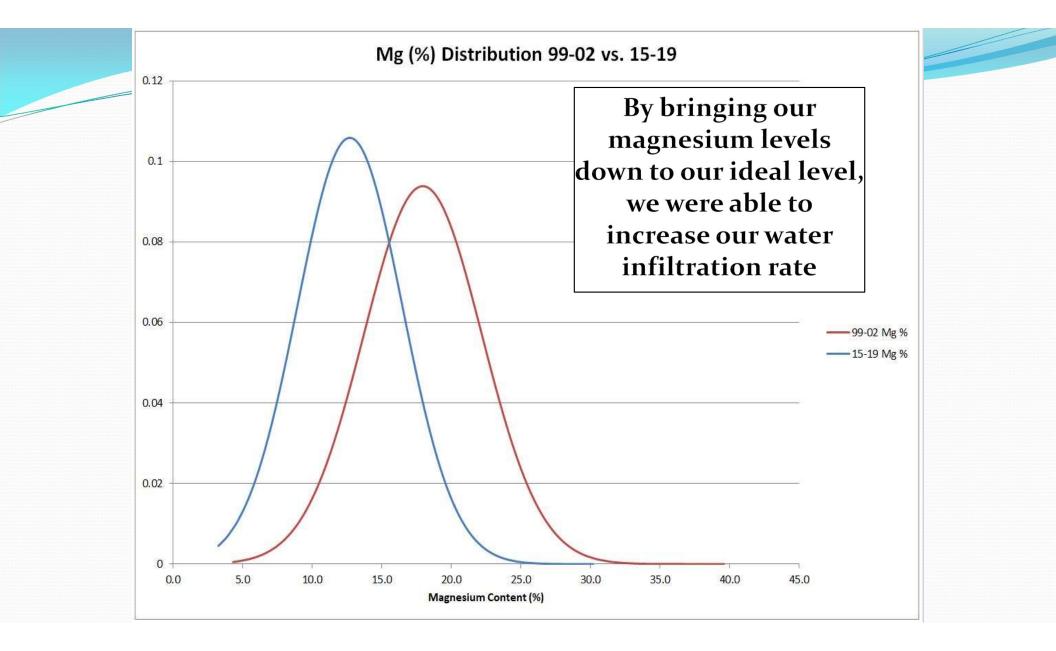
This chart shows the nutrient values over all of our farms ranked in 5% intervals. We use this chart to help in writing our formulas for seeding rate, N rate, etc.

P & K

Adequate P & K levels and soil balance are critical to low risk, high yielding production.

This should be accomplished with a well thought out nutrient management plan and applications should be made based on good quality soil tests and sound economic recommendations. Over application to avoid ever having P or K as a limiting factor is no longer practical.

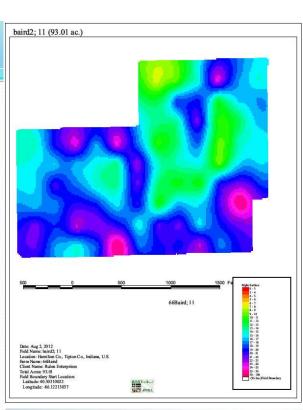




Ca is Critical to build soil structure and healthy no-till soils.

Excellent use of quality VRT maps – over application can be as bad as under application

25 years of VRT Hi-Cal lime Result: Current average need less than 0.8 t/a/4 years

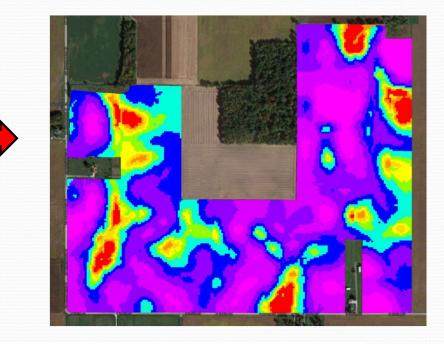

The Best Indicator for us?

Organic Matter.

Beats:

Soil type, yield, conductivity, soil test levels

Similar to: Topo, yield potential, CEC



Organic Matter Based Equations

NH3 2016

If ([Soil OM(%)] > 0.00 AND [Soil OM(%)] <= 1.7) Then RESULT= (95.00) Else If ([Soil OM(%)] > 1.7 AND [Soil OM(%)] <= 1.8) Then RESULT= (100.00) Else If ([Soil OM(%)] > 1.8 AND [Soil OM(%)] <= 1.9) Then RESULT= (110.00) Else If ([Soil OM(%)] > 1.9 AND [Soil OM(%)] <= 2.0) Then RESULT= (115.00) Else If ([Soil OM(%)] > 2.0 AND [Soil OM(%)] <= 2.15) Then RESULT= (120.00) Else If ([Soil OM(%)] > 2.15 AND [Soil OM(%)] <= 2.4) Then RESULT= (125.00) Else If ([Soil OM(%)] > 2.4 AND [Soil OM(%)] <= 2.7) Then RESULT= (135.00) Else If ([Soil OM(%)] > 2.7 AND [Soil OM(%)] <= 3.2) Then RESULT= (140.00) Else If ([Soil OM(%)] > 3.2 AND [Soil OM(%)] <= 3.8) Then RESULT= (155.00) Else If ([Soil OM(%)] > 3.8 AND [Soil OM(%)] <= 100) Then RESULT= (165.00)

OM OM Yield Ibs/bu Total N Planter Cover Bean om/100 Soil Carbon % of Carbon Mineralized Sidedress N %loss Net REC

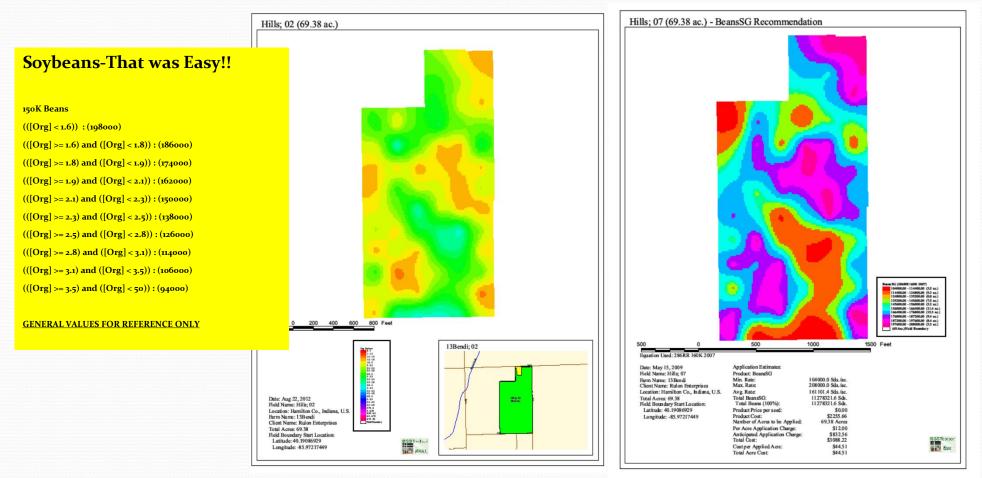
LOW	HIGH					Crop	Credit		lotal	asn	N %				
1.6	1.7	90	1.4	126	25	1	30	0.016	1000000	0.05	0.03	46	0.4	64.4	65
1.7	1.8	100	1.35	135	25	1	30	0.017	1000000	0.05	0.03	53.5	0.4	74.9	75
1.8	1.9	120	1.3	156	25	1	30	0.018	1000000	0.05	0.04	64	0.4	89.6	90
1.9	2	140	1.25	175	25	1	30	0.019	1000000	0.05	0.04	81	0.4	113.4	115
2	2.14	160	1.2	192	25	1	30	0.02	1000000	0.05	0.04	96	0.3	124.8	120
2.14	2.4	170	1.2	204	25	1	30	0.0214	1000000	0.05	0.05	94.5	0.3	122.9	125
2.4	2.7	190	1.15	218.5	25	1	30	0.024	1000000	0.05	0.05	102.5	0.3	133.3	135
2.7	3.2	210	1.1	231	25	1	30	0.027	1000000	0.05	0.05	107.5	0.3	139.8	140
3.2	3.8	230	1.1	253	25	1	30	0.032	1000000	0.05	0.05	117	0.3	152.1	155
3.8	4	260	1.05	273	25	1	30	0.038	1000000	0.05	0.05	122	0.3	158.6	165

VRT/OM Based Equations

Soybeans

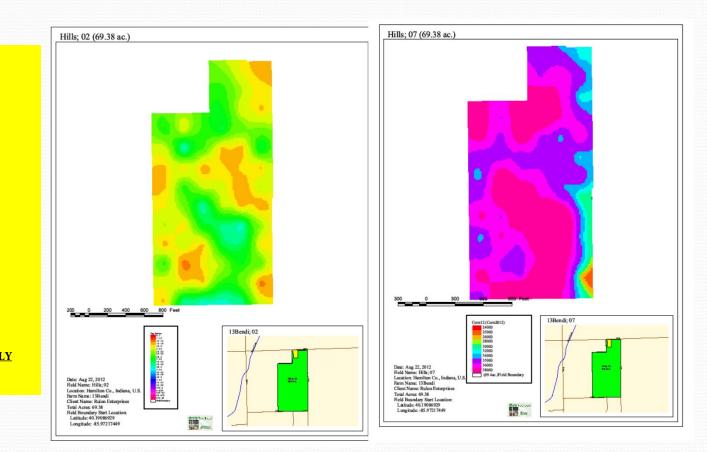
Corn

P, K, Lime

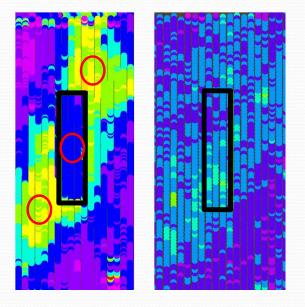

Gypsum

Nitrogen

Cover Crops and Litter

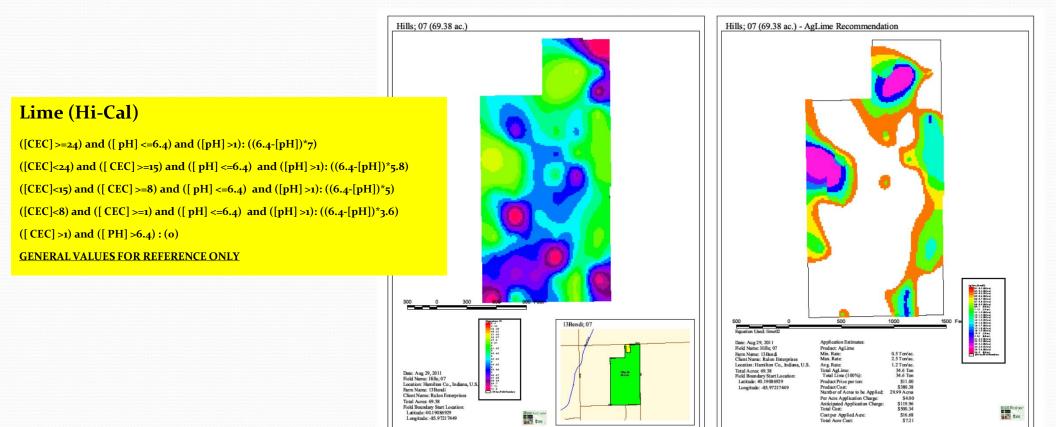

Soybeans and OM

Corn and OM


(([Org] < 1.7)) : (24000) (([Org] >= 1.7) and ([Org] < 1.8)) : (25000) (([Org] >= 1.8) and ([Org] < 1.9)) : (26000) (([Org] >= 1.9) and ([Org] < 2.0)) : (28000) (([Org] >= 2.0) and ([Org] < 2.0)) : (38000) (([Org] >= 2.15) and ([Org] < 2.4)) : (32000) (([Org] >= 2.4) and ([Org] < 2.4)) : (32000) (([Org] >= 2.7) and ([Org] < 2.7)) : (34000) (([Org] >= 2.7) and ([Org] < 3.2)) : (35000) (([Org] >= 3.2) and ([Org] < 3.8)) : (36000) (([Org] >= 3.8) and ([Org] < 50)) : (38000)</pre>

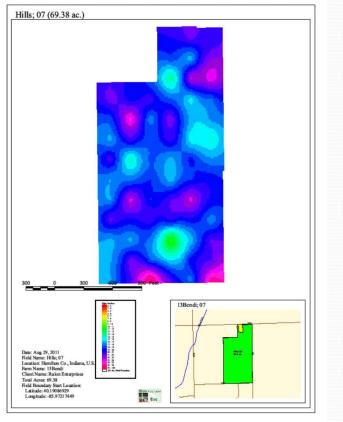
Corn

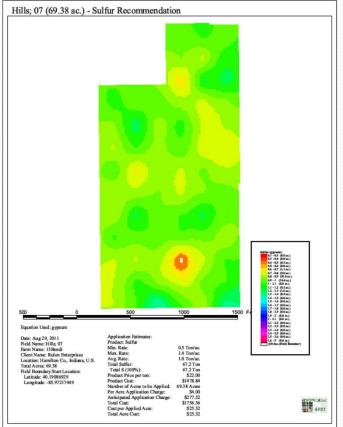
Were We Able To Get Results?


Test #1B	36Reynolds	Average Rate (33k) p	lanted in	a low	/ populati	ion area				
	Additional				С	ost of	Additional	B	enefit		
Population	Seeds	Yield (bu/ac)	Cost	t of Seed	Ext	ra Seeds	Yield	0	f \$4/bu	NET \$ (54.68)	
32,929	5,012	172.38	\$	103.81	\$	15.80	-9.72	\$	(38.88)	\$	(54.68
27,917		182.1	\$	88.01		6 6	-		(=)		

This test block was located in a Low Organic Matter area. In this situation we *increased* the seeding rate, and did not see a yield gain. This tells us that the soil was not able to support more plants.

The test block was less profitable than VRT REC due to increased seed cost/reduced yield.

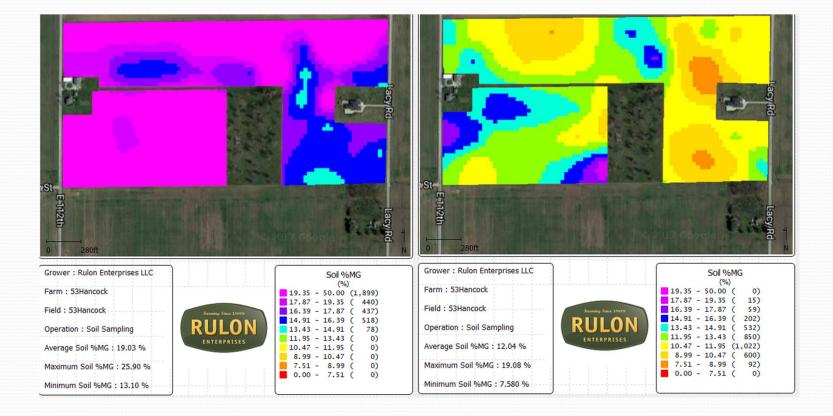

pH and Lime



MGBS and Gypsum

Gypsum

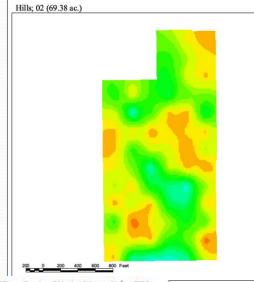
([Mag] >=25) : (1.4) ([Mag] <25) and ([Mag] >=23) : (1.3) ([Mag] <23) and ([Mag] >=21) : (1.15) ([Mag] <21) and ([Mag] >=19) : (1.0) ([Mag] <19) and ([Mag] >=17) : (0.9) ([Mag] <17) and ([Mag] >=15) : (0.8) ([Mag] <15) and ([Mag] >=13) : (0.7) ([Mag] <13) and ([Mag] >=11) : (0.5) ([Mag] <11) and ([Mag] >=0) : (0) <u>GENERAL VALUES FOR REFERENCE ONLY</u>


Why We Use Gypsum

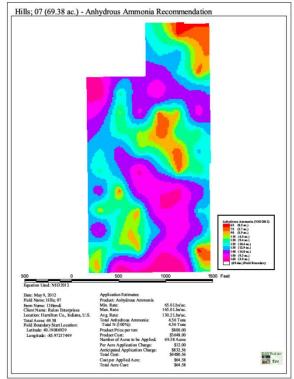
- Water management
- Transition from tillage to no-till
- Build soil structure with calcium
- Soil repair (remove magnesium)
- High Quality Sulfur Source
- Nutrient availability and cycling (Balance)
- Promote soil biology and build organic matter

DECREASE SOIL MG CONTENT : AVG = -0.5%/year

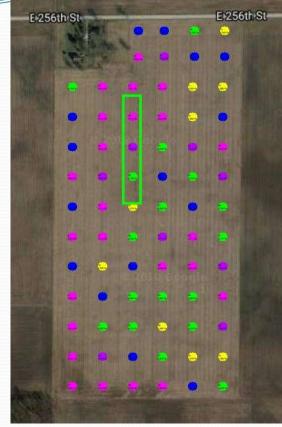
%MG Change over 15 years = - 7% 19.03 (13.1 to 25.9) 12.04 (7.58 to 19.08)


Nitrogen and OM

Nitrogen


Side dress N

([Org] < 1.7)) : (65) (([Org] >= 1.7) and ([Org] < 1.8)) : (75) (([Org] >= 1.8) and ([Org] < 1.9)) : (90) (([Org] >= 1.9) and ([Org] < 2.0)) : (115) (([Org] >= 2.0) and ([Org] < 2.15)) : (120) (([Org] >= 2.15) and ([Org] < 2.4)) : (125) (([Org] >= 2.4) and ([Org] < 2.7)) : (135) (([Org] >= 2.7) and ([Org] < 3.2)) : (140) (([Org] >= 3.2) and ([Org] < 3.8)) : (155) (([Org] >= 3.8) and ([Org] < 50)) : (165) GENERAL VALUES FOR REFERENCE ONLY

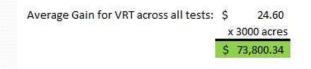

OM	OM	Yield	ibs/bu	Total N	Plant	Cove	Bean	om/100	Soll Carbon	%ofC	Mineralized	Sidedrei	%joss	Net	REC	
LOW	HIGH					Crop	Credit	t i	Total	38 N	N%					
1.6	1.7	90	1.4	126	25	1	30	0.016	1000000	0.05	0.03	46	0.4	64	65	
1.7	1.8	100	1.35	135	25	1	30	0.017	1000000	0.05	0.03	53.5	0.4	75	75	
1.8	1.9	120	1.3	158	25	1	30	0.018	1000000	0.05	0.04	64	0.4	90	90	
1.9	2	140	1.25	175	25	1	30	0.019	1000000	0.05	0.04	81	0.4	113	115	-
2	21	160	1.2	192	25	1	30	0.02	1000000	0.05	0.04	96	0.3	125	120	
2.1	2.4	170	1.2	204	25	1	30	0.021	1000000	0.05	0.05	94.5	0.3	123	125	
2.4	2.7	190	1.15	218.5	25	1	30	0.024	1000000	0.05	0.05	102.5	0.3	133	135	
2.7	3.2	210	1.1	231	25	1	30	0.027	1000000	0.05	0.05	107.5	0.3	140	140	
3.2	3.8	230	1.1	253	25	1	30	0.032	1000000	0.05	0.05	117	0.3	152	155	
3.8	4	260	1.05	273	25	1	30	0.038	1000000	0.05	0.05	122	0.3	159	165	

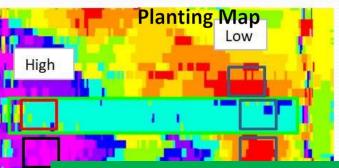


Nitrogen Rate Blocks

OM Grid with Test Block Layout

Rate Applied (Units) 135 units/ac

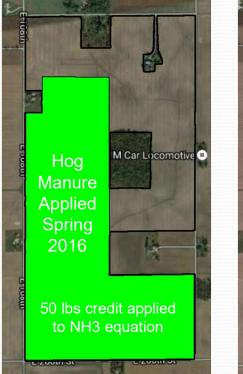


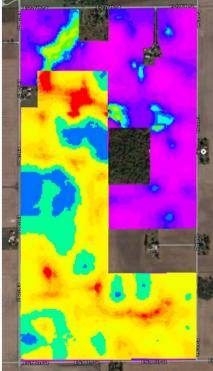

- Test blocks were applied to strategic locations to test our VRT Equation across different soil types, OM changes, elevations, and other variables.
- The goal is to overlay this block on the harvest map and see if there are any differences where we may want to tweak our equation.
- Also these test blocks are "built in" to the prescription, so no action was needed from the operator during application.

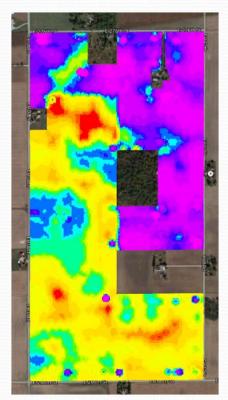
Were We Able To Get Results?

	Test #3A	10Lee-South	Average Rate (3	32k) p	lanted in	a hig	gh populat	ion/OM area				NET - \$ 39.61
	5829A4											
		Additional				(Cost of	Additional	В	enefit		39.61 NET
	Population	Seeds	Yield (bu/ac)	Cost	of Seed	Ext	tra Seeds	Yield	At	\$4/bu		NET
FLAT	31,980		195.08	\$	87.91		1070	2		s.		17
VRT	35,760	3,780	207.58	\$	98.30	\$	10.39	12.5	\$	50.00	\$	39.61
								1				
	Test #3B	10Lee-South	Average Rate (3	32K) p	lanted in	a lov	w populati	on/OM area				
		Additional				(Cost of	Additional	В	enefit		
	Population	Seeds	Yield (bu/ac)	Cost	of Seed	Extra Seeds		Yield	of	\$4/bu		NET
FLAT	31,960	4	216.79	\$	87.85		828	2		2		č.
VRT	24,710	-7,250	213.41	Ś	67.92	Ś	(19.93)	-3.38	Ś	(13.52)	Ś	6.4

- This test block shows a test of our Corn VR Prescription through both low and high OM areas.
- Below is the projected profit from using VRT and our formula over all of our corn acres.




- Test blocks were applied to strategic locations to test our VRT Equation across different soil types, OM changes, elevations, and other variables.
- The goal is to overlay this block on the harvest map and see if there are any differences where we may want to tweak our equation.
- High Also these test blocks are "built in" to the prescription, so no action was needed from the operator during application.



Yield Map

Nitrogen/Hog Manure Application

What we do to manage soil Quality:

• Low Disturbance N-Applicator/Manure

Target Your Cover Crop Choice

Choose the right cover for your goal

- Compaction removal
- Ease of management
- Disease control
- Nutrient cycling
- Erosion control
- Enhance Rotations
 BUILD SOIL HEALTH

Fall 2021 Mixes

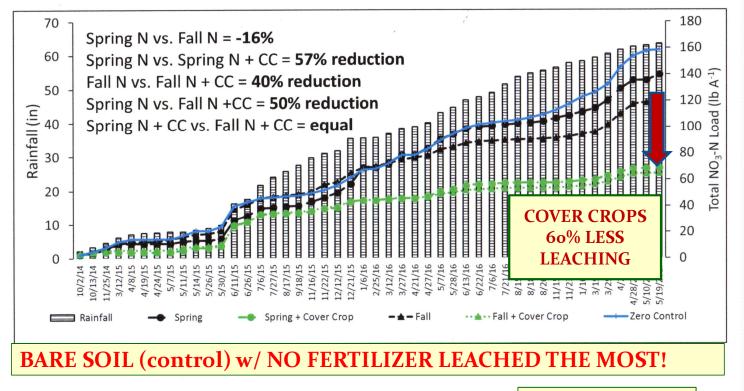
CORN 22 25# Oats 2# Radish 2# Rape 3# Balansa Clover Late Harvest 15# Cereal Rye 15# Oats 3# Rape

SOYBEANS 22 25# Oats 2# Radish 3# Rape

Late Harvest 35# Cereal Rye



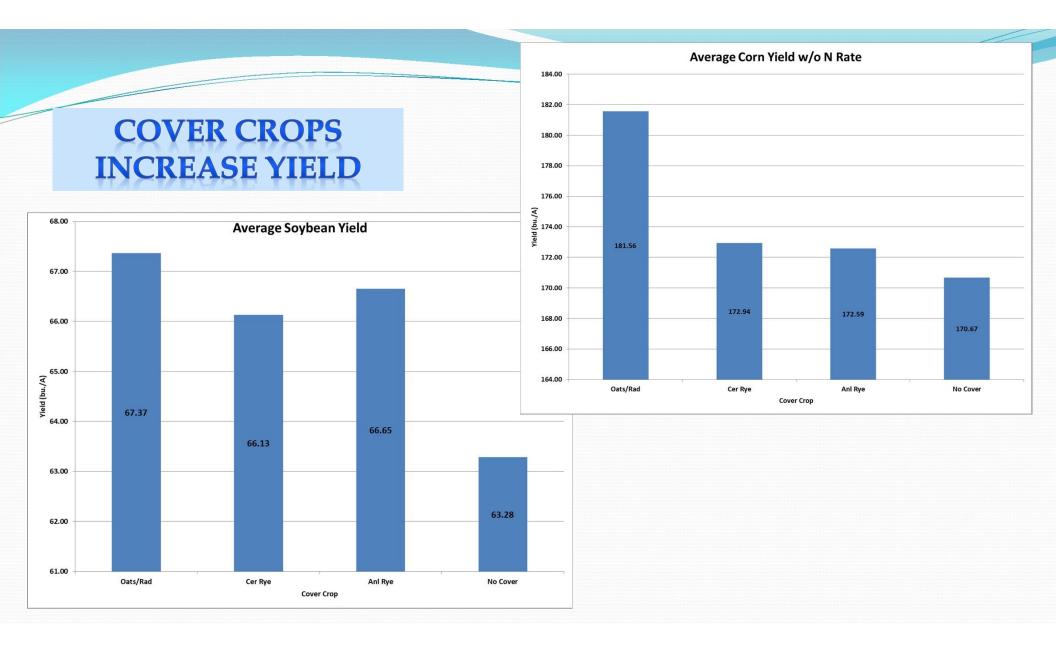
FLOODING/EROSION

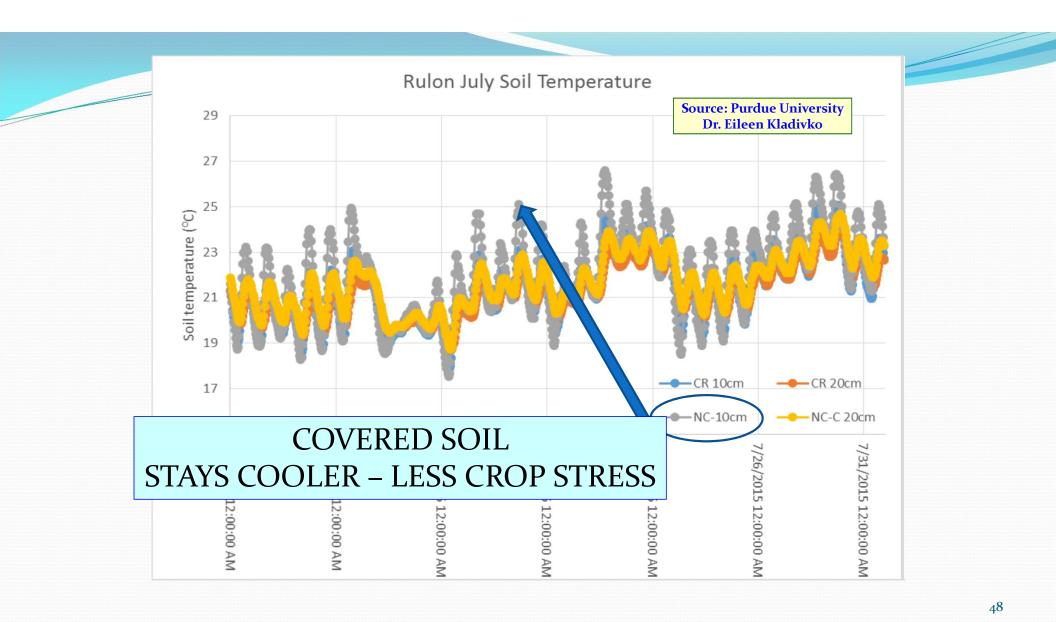

WIND EROSION

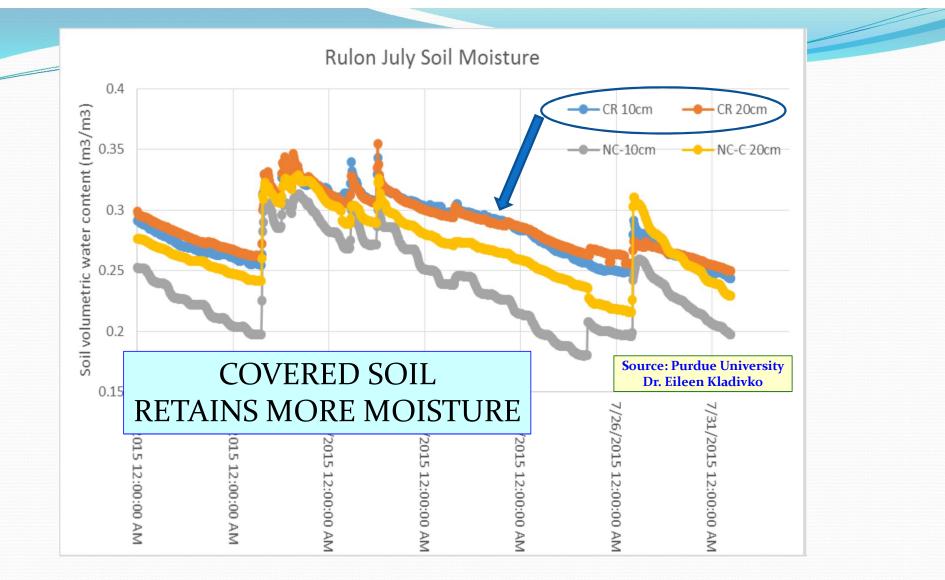
HOW DO WE STOP NUTRIENT LEACHING?

Source: Purdue University Dr. Shalamar Armstrong

2011-2021 CCSI Cover Crop Test


Harvest Data


COVER	CASH	2011	2013	2015	2017	2019	2021	ALL YEARS	ALL YEARS
CROP	CROP	AVG YIELD	ADVANTAGE						
Oat Radish	CORN	148.11	189.50	177.15	218.97	193.98	230.53	193.04	10.75
Cereal Rye	CORN	140.55	176.78	176.82	203.77	188.99	227.20	185.69	3.39
Annual Rye	CORN	146.60	178.31	166.44	205.64	188.35	226.55	185.32	3.02
No Cover	CORN	146.70	173.59	160.54	209.65	185.91	217.38	182.30	0.00


COVER	CASH	2012	2014	2016	2018	2020	2022	ALL YEARS	ALL YEARS
CROP	CROP	AVG YIELD	ADVANTAGE						
Oat Radish	SOYBEANS	59.5	74.5	68.1	70.1	70.6		68.56	4.11
Cereal Rye	SOYBEANS	59.8	74.1	64.5	69.2	70.4		67.60	3.15
Annual Rye	SOYBEANS	63.4	73.55	63	69.1	69.6		67.73	3.28
No Cover	SOYBEANS	58.1	71.55	60	66.3	66.3		64.45	0.00

- 1. When planting into a Grass (ie cereal rye/annual rye) stand establishment and nitrogen management become critical. (2011 and 2017)
- 2. This plot does not allow for varying N management or planter setup so the grass covers are not optimized but do still show an advantage (3bu) over no cover.
- 3. All covers show similar benefits for soybeans (+3.1-4.1bu) with a potential advantage to the nematicide effect of radish in the Oat/radish mix

Cover Crop +10.75 bu/ac Corn Cover Crop +4.11 bu/ac Soybeans

Last Planting Date (Central Indiana)

Summer (Aug 10) September 15 October 1-7 October 21 November 10 Lots of Choices Austrian Peas/expensive legumes Oats/Radish/Clover Rape/Annual Rye Grass Cereal Rye

Check out Midwest Cover Crop Council Cover Crop Selection Tool http://www.midwestcovercrops.org

Planting Methods

- Aerial/Surface
- Air Cart/harrow
- No-Till Drill
- Precision Planter
- CONSIDER:
 - Seed size (Hopper size)
 - Planting date (Timing)
 - Moisture required to germinate
 - Fall growth needs
 - Seeding rates and cost
 - Mixes
 - Coatings
 - Inoculants

Planting Methods

Drilled on Sept. 15 Photos Nov. 1

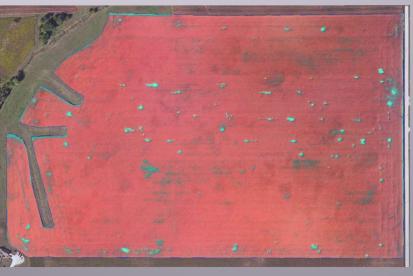
Planting MethodsAerial App Sept. 15 Photos Nov. 1

Mixes

- Root types
- Growth rate
- Planting date
- Feeder/Scavenger/Storage
- Legume/Grass/Brassica
- Build OM
- Boost cash crop
- Save on inputs
- Improve winter survival
- Termination method/timing

Other things to worry about

- Quality Seed Source/Supply
- Bulk blending/delivery
- Spring germination of fall seeding (Hard Seed)
- Mis-application (uneven/outside field)
- Seeding rates
- Chemical Programs
 - Residuals from cash crop
 - Termination of cover crop+Timing
- Test Strips
- Tile lines (Roots?)
- Voles



Roots In Tile Lines?? Can Be Good or Bad COOL GOOD NOT GOOD

Voles and Different Cover Crops

Crop Type Annual Ryegrass Cereal Ryegrass Oats/Radish Mix <u>Ibs Applied</u> (18#) (35#) (32# & 2.5#)

Considerably less vole holes in the Oats/Radish mix strips.

Rulon E	nterprises LLC	- Cover Crop	Cost Analy	/sis			
SEED COSTS		Cost/Acre	Acres	Seed Cost			
Mix #1- Early After Soybea	\$20.79	1,300	\$27,027				
Mix #2- Late After Soybear		\$15.12	1,300	\$19,656			
Mix #3- Early After Com	\$14.85	1,300	\$19,305				
Mix #4- Late After Com (Od	\$7.25	1,300	\$9,425				
	5,200	Se	ed Cost =	\$75,413			
			Seed	Cost/Acre =	\$14.50		
Planting Costs for Seaso	Quantity	Rate	Total Cost				
Tractor Hours		338	\$59.00	\$19,942			
Labor (40 acres/hr@70%=	185.7	\$17.50	\$3,250				
Fuel		1267.5	\$3.05	\$3,866			
Planter Repairs/Wear		5,200	\$3.00	\$15,600			
Total Other Costs	Acres =	5,200		\$42,658			
			Planting	Cost/Acre =	\$8.20		
	Т	otal Cover Crop Cost =		\$118,071			
		Total Cost/Acre Planted = \$22.71					

-

			Per acre	Acres	Total Benefit
Fertilizer Saved-P&K (20#P@	\$.38 + 30#K@\$	5.225)	\$14.35	5,200	\$74,620
Fertilizer Saved-N (35#/Aci	re: 200 versus 1	165)	\$7.35	2,600	\$19,110
Corn Yield (4yearsx64strips	:Plot Data: 7.1	bu@\$4)	\$28.40	2,600	\$73,840
Soybean Yield Increase (1.	95bu@\$10)		\$19.50	2,600	\$50,700
TOTAL	ANNUAL E	BENEFIT=	\$41.98		\$218,270
Draught Talaganaa (2004.47	20 http://www.Eth		¢24.00	2 600	¢62.400
Drought Tolerence (2004-17:			\$24.00 \$10.80		\$62,400 \$56,160
	Carbon Content (5.35bu/.1 of OM x 50% = 2.7bu@ Erosion Reduction (2 ton/acre @ \$4)				\$41,600
CSP Program Payment (\$4			\$8.00 \$7.69	,	\$40,000
	NG-TERM E	BENEFIT=	\$50.49		\$200,160
	_				
	То	tal Cov	er Crop	Benefit =	\$418,430
		Net Ec	onomic	Return =	\$300,359
		NCTEC	ononic		φ000,000
ROI = 254%		Net Pro	fit/Acre I	Planted = S	\$57.76

In Conclusion..... Soil Health and Fertility Pay Big

You can Manage HEALTH and FERTILITY in your Soil!!

A Soil Health System can increase yield (10 bu Corn/ 4 bu Soybeans)

\$\$\$ Spent to increase Soil Health is a good investment (254% ROI)

Land Owners should be asking to see Soil Health Reports, not just fertilizer tests

THANK YOU!!
