Comparing yields, profitability, and nutrient loss of C-S-W vs. Conventional C-S

Corn

Soybean

Wheat

Lowell Gentry

Principal Research Specialist in Agriculture University of Illinois

Indiana CCA

Indianapolis, IN

December 15, 2021

Reducing Nutrient Loads to Gulf

for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico and Improving Water Quality in the Mississippi River Basin

The Science Advisory Board called for 45% reductions in both N and P with a goal of reducing the hypoxic zone to 2,000 square miles.

Target Dates:

By 2025 = 15% for N and 25% for P

By 2035 = 45% for N and 45% for P

Extremely Warm and Dry February

Average Temperature (°F): Departure from 1981-2010 Normals

February 01, 2017 to February 24, 2017

Warmest February for the Cornbelt in 2017.

Record corn yields with largest hypoxic zone.

-N mineralization -Fall N application -Early spring N application

Are we draining the ecological capital from the prairie?

Tile drainage is a prerequisite for high yields

Tiles transport nutrients, especially nitrate.

Non-point Source

• Nitrate

- Tile drainage (predominant source)
- Overland runoff
 - nitrate low in precipitation
- Phosphorus
 - Overland runoff (predominant source)
 - soil erosion
 - unincorporated P fertilizer
 - Tile drainage

Glaciation/Tile Drainage/Nitrate Loss

Reference: Mickelson and Colgan (2003)

Tile Drainage (by county in the MRB)

Nitrate loss across the Mississippi River Basin

Wabash River (Embarras River)

Topographic Map of Illinois

> Glaciated areas are flat and have poor natural drainage.

Upper Embarras River Watershed

- 119,00 acres
- Flat topography
- Moraines
- 90% row crop
- Few animals
- Little sewage effluent

USGS River Gauge (Camargo, IL)

(Visited bridge 1700 times in past 28 years)

Large River Flow (Camargo, IL)

Sediment load means soil erosion

and large Pload

River Nitrate Concentration

Upper Embarras R. at Camargo, IL

River Dissolved P Concentration

Upper Embarras R. at Camargo, IL

River Sulfur Concentration

Upper Embarras R. at Camargo, IL

Upper Embarras River Watershed (at Camargo IL) Annual N load = 27 lbs/A/yr

Tile Nitrate Load: Fall N vs. Spring N

Can C-S-W compete with C-S?

A longer rotation (C-S-W) with cereal rye after corn and double crop soybean after winter wheat will...

- reduce nutrient loss (especially tile nitrate) and
- maintain yield and profitability.

Benefits of C-S-W Rotation

- Wheat in rotation benefits corn and soybean yield
- Pest cycles broken
- Double-cropped soybean opportunity after wheat
- "Soybean N credit" to wheat
- More ground cover (decrease erosion)
 C-S-W = 30 months covered of 36 months
 C-S = 10 months covered of 24 months

Net Mineralization Following Soybean (Formerly referred to as the "Soybean N Credit")

Winter wheat takes the position of a cover crop and utilize mineralized N following soybean, keeping nitrate out of the tile.

Planting soybean "green" into standing cereal rye

This amount of biomass (2.5 tons/A) reduced tile nitrate to 1 ppm.

Planters can be equipped with roller crimpers to create a mat of cereal rye residue.

How much cereal rye is needed to decrease tile nitrate concentrations?

This biomass (0.5 tons/A) is sufficient to significantly reduce tile nitrate concentrations. (6 to 8 inches tall).

Cover crops may improve soil health by adding C as well as retaining N that may have otherwise leaked out of the field via tile drainage.

Benefits of cover cropping

- Decrease soil erosion
- Add organic matter
- Feed microbes/nutrient cycling
- Suppress weeds
- N catch crop

Risks of cover cropping

- Delay row crop planting
- Cooler soil temperature
- N immobilization
- Allelochemicals
- Disease "green bridge"

Edge of Field Remediation

- Drainage water management
- Bioreactors
- Constructed wetlands

In-Field Remediation

- 4 R's of N management
- Cover crops

Edge of Field Remediation

- Constructed wetlands
 - expensive to build berms
 - requires topography
 - larger area
- Bioreactors

- less expensive and smaller footprint
- Drainage water management

- least expensive, but where does the water go?

Bioreactor Monitoring Equipment

Bioreactor Performance

Bioreactor 2 (Field W-2)

Limitations of Bioreactors

- Cold tile temperatures
- Bypass flow or flooding
- Back pressure on tile (fate of retained water??)
- P source for the first year
- Size of bioreactor

Treat the cause not the symptom

In-field practices vs. end-of-pipe

On-farm research in Piatt County

Field Design and Crop Rotation

Wheat on east side in 2015 for tiling

I

Wheat

on west side

in 2014 for

tiling

C-S-W

- C-S-W with each phase of the rotation every year
- Cereal rye after corn, double crop soybean after winter wheat
- Strip-till corn, no-till soybean, and no-till wheat
- Corn N = 20 lbs/A starter; 160 lbs/A as side–dress
- Wheat N = 24 lbs/A as 1240D; 100 lbs/A as Super U with stabilizer

C-S

- C-S with each phase of the rotation every year
- Full width tillage in fall and spring
- If possible, fall N fertilization (125 lbs/A) with 20 lbs/A starter and 35 lbs/A as UAN side-dress
- If not, 20 lbs/A as starter with 160 lbs/A side dress

Tile Nitrate Concentration

Crop Yield in 2015

2015 Corn Grain Yield

I ILLINOIS

2015 Corn Stalk Nitrate

2015-2016 Cereal Rye Cover Crop

Cover Crop	Biomass	Biomass
(April)		Ν
	Tons/A	lbs/A
Cereal Rye	0.61	21

Cover crop after wheat instead of double crop soybean in 2015

John M. Green Research Assistant University of Illinois Pictured here collecting cover crop biomass

Radish and Turnip Sown in August and harvested in early November

Total Biomass

Cover Crop	Biomass
	tons/A
Radish	1.67
Turnip	0.73
Red Clover	0.26
Volunteer wheat	0.21
Total	2.87

Tile Nitrate from C-S-W

Corn N Rate Trials

2016 Corn Grain Yield

2016 Corn Stalk Nitrate

Over-tightened the N cycle?

Flow weighted tile nitrate = <1 ppm following this radish and turnip cover crop (planted after wheat harvest in 2015).

Too much of a good thing?

Or maybe not that good of a thing when C/N ratio is 35:1?

Crop Yields in 2016

Crop Yields in 2017

Corn N Rate Studies in 2017

Corn N Rate Yield Curves in 2017

Lowest EONR <150 lbs of N/A following warm winter

EONR for corn 2018-2020

- 2018 EONR was 200 lbs/A for both C-S and C-S-W
 - Cold winter and spring

2019 = EONR was 155 lbs/A
 Late planted in C-S; prevent plant in C-S-W

2020 = EONR was 150 lbs/A for both C-S and C-S-W
 Big difference in yield at zero N rate

Corn N Rate Yield Curves in 2020 EONR was 150 bu/A for both C-S-W and C-S

• Note: Zero N rate has greater yield in C-S-W, but sufficient N fertilizer masks this effect.

Soybean planted "green" into cover

Photo by Mary Auth

Tile Nitrate from C-S-W (2015-2020)

Tile Nitrate from C-S (2016-2020)

Tile Nitrate from Field W-1 (2015-2020)

Corn Yields, 2015-2021

IILLINOIS

Soybean Yields, 2015-2021

IILLINOIS

Wheat/D.C. Soybean Yield, 2015-2021

IILLINOIS

Corn \$ Margin/acre, 2016-21

Revenue does not include any government payments. Expenses do not include any land costs. Corn price per bushel used was USDA market year average.

Soybean \$ Margin/acre, 2016-21

Revenue does not include any government payments. Expenses do not include any land costs. Soybean price per bushel used was USDA market year average.

Wheat/D.C. Soy vs. Corn vs. Soybean \$ Margin/acre, 2016-2021

Revenue does not include any government payments. Expenses do not include any land costs. Crop price per bushel used was USDA market year average.

C-S vs. C-S-W Combined Average \$ Margin/acre, 2016-2021

Revenue does not include any government payments. Expenses do not include any land costs. Crop price per bushel used was USDA market year average.

Conclusions

- Timing of fertilizer N application is important
- Longer crop rotation with cover crops greatly reduce nitrate leaching (no long lag time)

Winter wheat absorbs mineralized N following soybean

Winter wheat residues add extra C to the soil

Cereal rye greatly reduces tile nitrate and adds extra C to the soil

- Double crop soybean after wheat needed for profitability
- Bioreactors can help, but still a work in progress

Cover Crop Guide

Cover crop for new adopters

By Dr. Shalamar Armstrong, Lowell Gentry, Dan Schaefer, Eric Miller and John Pike

A publication of the Illinois Nutrient Research & Education Council

Funding Sources

Nutrient Research and Education Council (NREC)

Thank You (Questions??)

