

BIOLOGICAL FUNGICIDES:

WHAT ARE THEY?
HOW DO THEY WORK?
CAN WE USE THEM EFFECTIVELY IN FIELD CROPS?

Darcy Telenko, Ph.D.
Associate Professor and Field Crop Extension Pathologist

Resources for Indiana

Follow on Twitter: @DTelenko

New Purdue Field Crop Pathology Website - 2023

https://indianafieldcroppathology.com/

Crop Protection Network

https://cropprotectionnetwork.org/

Questions to answer

- What are biopesticides?
- Why use biopesticides?
- How do biopesticides work?
- Do biopesticides work?

Principles of Plant Disease Control

- Early detection and diagnosis may allow for proper implementation of a disease management plan to prevent the spread of disease
- By the time disease symptoms appear it is often too late to reverse the damage
- Proper diagnosis of pathogens will also help plan for future seasons
- Classification of control strategies
 - > Exclusion
 - > Inoculum reduction
 - Chemical control
 - ➤ Biological control

Biopesticides

EPA Definition:

"Biopesticides include naturally occurring substances that control pests (biochemical pesticides), microorganism that control pests (microbial pesticides), and pesticidal substances produced by plants containing added genetic material (plant-incorporated protectants) or PIPs."

Note: Some biopesticides are approved for use in organic agriculture production. However, it is important to understand that not all biopesticides are certified organic products.

BIOLOGICAL PRODUCTS

Biofertilizers

- Microbials used to enhance plant nutrient uptake from soil
- Nitrogen fixing bacteria
- Mobilizers of specific nutrients (zinc, sulfur)
- Phosphate solubilizers

Biostimulants

- Microbials:
- Primarily bacteria, used as a seed or soil treatment to aid in nutrient assimilation
- Acids:
- Organic acids (humic and fulvic acids) used as soil amendments, formed by the microbial degradation of plant matter
- Extracts:
- Seaweed extracts
- Plant extracts

Biopesticides

 Biopesticides are derived from natural materials, such as plants, bacteria and certain minerals.

Biochemicals

- Plant Extracts
- Minerals
- Plant Growth Regulators (PGR)
- Semiochemicals (pheromones)
- Organic Acids

Macroorganisms (Biological Control)

- Insects
- Mites
- Nematodes

Microbials

- Bacteria
- Fungi
- Protozoan
- Virus
- Yeast
- Others

Figure 1.4 Biological market overview. Modified from Dunham Trimmer® 2015 (As originally cited by Ag International). In Web Book – Biopesticides for Crop Disease Management. CPN 4010. doi.org/10.31274/cpn-20230919-0

Biopesticides - Biochemicals

Naturally occurring substances that control pests by non-toxic mechanisms.

- Plant extracts (Neem oil, Citrus oil, Seaweed/Kelp extracts, Giant knotweed)
- Hydrogen peroxide
- Salts of phosphorous acid
- Insect sex pheromones

Biopesticides - Microbes

Consist of a microorganism (e.g. a bacterium, fungus, virus or protozoan) as the active ingredient

- Bacillus spp. (Bt producing strains of B. thuringensis)
- *Pseudomonas* spp.
- Streptomyces spp.
- *Trichoderma* spp.
- Coniothyrium minitans
- Bacteriophages

Plant-Incorporated-Protectants (PIPs)

Pesticidal substances that plant produce from genetic material that has been added to the plant.

• BT gene from Bacillius thuringensis, BT Cotton/BT Corn

Why use biopesticides?

- Generally less toxic than conventional pesticides
- Generally affect only the target pest and closely related organisms
- Generally effective in 'relatively' small quantities with little residual
- Generally short or no REI or PHI

How do they work?

Modes of action:

- Antibiosis (microbial)
- Parasitism and Predation (microbial)
- Competition (microbial)
- Contact inhibition (biochemical)
- Induced Resistance (biochemical and microbial)

Major FRAC Codes for Biopesticides

FRAC Code P - Host Plant Defense Induction

- **Group Name and Chemical Group:** The host plant defense induction groups vary, with several salicylate-related groups, elicitors, and phosphonates. Although the chemical groups vary, they are classified similarly because when applied, they chemically induce a plant defense response, such as systemic acquired resistance. Chemical groups, including natural compounds, plant extracts, and bacterial or fungal organisms, are typically unique to the molecule or organism.
- Mode of Action and Target Site: Plant defense response induction
- **Risk for Resistance:** Resistance is unknown for most biopesticides in this class. The phosphonate group (fosetyl-AL and phosphoric acids and salts) is classified as low risk, and there have been very few confirmed cases of resistance in pathogens to this group.

FRAC Code BM 01 - Biologicals with multiple modes of action (plant extracts)

- Group Name: Plant extracts
- **Biological Group:** Polypeptide, phenols, sesquiterpenes, triterpenoids, coumarins, terpene hydrocarbons, terpene alcohols, and terpene phenols
- Mode of Action and Target Site: Multiple. Varies depending on the plant extract used. Target sites include ion membrane transporters, affecting fungal spores and germ tubes, cell membrane disruption, cell wall disruptions, and inducing plant defense mechanisms.
- Risk for Resistance: Resistance is not known.

FRAC Code BM 02 - Biologicals with multiple modes of action (microbials)

- Group Name: Living microbes, extracts, or metabolites
- Biological Group: Strains of living microbes or extract metabolites
- Mode of Action and Target Site: Multiple. Varies depending on the compound. Examples include competition, mycoparasitism, antibiosis, and membrane disruption by fungicidal lipopeptides.
- Risk for Resistance: Resistance is not known.

Source: Web Book – Biopesticides for Crop Disease Management. CPN 4010. doi.org/10.31274/cpn-20230919-0

How do they work? Antibiosis (microbial pesticides)

- Growth of one organism detrimental to another
- Production of antibiotics and other growth inhibitors
- Examples

Bacillus spp., Pseudomonas spp., Trichoderma spp., Gliocladium spp., Streptomyces spp., etc.....

How do they work? Parasitism/Predation

- Coniothryium minitans (Contans WG)
 - Parasite of Sclerotinia spp.
- *Trichoderma* spp.
 - Parasite of numerous soilborne fungal pathogens
 - Stimulate plant host defenses and growth
- Bacteriophages
 - Viruses that infect and lyse bacteria
- Paecilomyces fumosoroseus
 - Parasitic to whiteflies, thrips, aphids and spidermites (greenhouse)
- Paecilomyces lilaciunus
 - Parasitic to nematodes in field crops, vegetables, fruit and turf

How do they work? Competition (microbial)

Nutrients

Utilize nutrients on leaf surface or at root zone (rhizosphere) that a pathogen requires for initial colonization

Colonization sites

Deny the pathogen access to a particular colonization site on leaf or root surfaces

Camouflage?

Possible that increased microbial activity can camouflage roots from pathogens that rely on specific root signals to initiate germination or to guide movement/growth towards the host

How do they work? Contact Inhibitor (biochemical pesticides)

- Directly inhibit germination/growth of pathogen propagules
- Disrupt cell integrity
- Often can help dry out active lesions and prevent/slow secondary spread

How do they work? Induced Resistance (biochemical and microbial)

A physiological "stage of enhanced defensive capacity" elicited by specific environmental stimuli, whereby the plant's innate/basal defenses are potentiated against subsequent biotic challenges

Biochemistry & Molecular Biology of Plants. 2000. B.B. Buchanan, W. Gruissem, R.L. Jones (eds.)

- Plants are not defenseless.
- The difference between resistance and susceptibility is due to the timing of pathogen recognition and expression of defense.

Induction of Resistance

Two states of induced resistance

- Systemic Acquired Resistance (SAR)
- Induced Systemic Resistance (ISR)

Actigard (acibenzolar-*S*-methyl

- Synthetic elicitor of SAR
- First marketed for the control of powdery mildew on small grains
- No direct effect on pathogens
- Limited mobility in the plant
- Carboxylated byproduct elicits the plant's defenses
- Actigard is not a biopesticide, but is the best example of a commercially viably defense elicitor available at the moment

Acibenzolar-S-methyl

Table of Products

Examples of Biopesticides. This is not a comprehensive list of all the available biopesticides.

Name	Active Ingredient(s) and Strain	Activity	Targeted Diseases	Crops	
Bacterial Organisms					
			Cereal grains—damping off (Fusarium spp., Pythium spp. and Rhizoctonia spp.) powdery mildew, and sheath spot	Cereal grains	
ACTINOVATE AG®	Streptomyces lydicus Strain WYEC 108	EXCLUSION, ANTI-FUNGAL, PARASITISM	Oilseed crops—Aphanomyces root and hypocotyl rot, charcoal rot, damping off (<i>Fusarium</i> spp., <i>Phytophthora</i> spp., <i>Pythium</i> spp., and <i>Rhizoctonia</i> spp.), gray mold, powdery mildew, and Verticillium wilt	Oilseed crops	
Fungal Organisms					
ALFA-GUARD GR®	Aspergillus flavus Strain NRRL 21882 (non-toxigenic strain)	COMPETITION	Aspergillus ear rot (Aspergillus flavus)	Corn (field and popcorn)	
AF36 PREVAIL®	Aspergillus flavus Strain AF36 (non-toxigenic strains)	COMPETITION	Aspergillus flavus	Corn—use limited AZ and TX Cotton—use limited AZ, CA, and	
CONTANS WG®	Coniothyrium minitans Strain CON/M/91-08	MYCOPARASITISM	Sclerotinia sclerotiorum and S. minor	Oilseed crops and soybean	

https://cropprotectionnetwork.org/web-books/biopesticides-for-crop-disease-management?section=table-of-products

Do Biopesticides work?

Efficacy of products vary

- Target pathogen?
 - Works well against some pathogens, but not others
 - Products are not curative!!!
- Environment?
 - Efficacy is limited, especially under conditions that are highly conducive to sever disease
- Crop/Cultivar?
 - Has not been looked at, but there is some evidence
- Timing?
 - Again not curative, need to be put out in preventative manner that integrates with other pest control strategies (cultural and chemical)
- May not be economical; depends on the specific operation

Biopesticide Evaluations in Row Crops

Management of *Sclerotinia sclerotiorum* in soybean using the biofungicides *Coniothyrium minitans* and *Bacillus amyloliquefaciens*

White mold of soybean

Effectiveness of the Biological Control Coniothyrium minitans (ContansWG) on Peanut

Effect of *C. minitans* Soil
Application on Sclerotinia Blight
in Peanut

Healthy sclerotia

Parasitized sclerotia

Coniothyrium minitans

- Mycoparasitic activity on S. sclerotiorum was first discovered in 1947
- Limit hyphal growth and degrade sclerotia
- Achieved through expression of cell wall degrading enzymes
- Commercial formulation: Contans WG

Bacillus amyloliquefaciens

- First isolated in 1943
- Prevent pathogen infection through control of mycelial growth
- Commercial formulation: Double Nickel LC (Certis USA LLC, Colombia, NC)

Dual Culture Assay

A distinct inhibition zone was recorded surrounding the B. amyloliquefaciens colony.

No inhibition zone was recorded between C. minitans and S. sclerotiorum.

Colony or Isolate	Inhibition Zone # ^z	No Inhibition Zone # ^z
B. amyloliquefaciens	16	0
C minitans	0	16

Conrad, A. M.[†], and Telenko, D. E. P. 2023. Efficacy of biocontrol agents *Coniothyrium minitans* and *Bacillus amyloliquefaciens* for controlling *Sclerotinia sclerotiorum* in Indiana soybean. PhytoFrontiers. doi.org/10.1094/PHYTOFR-07-22-0080-R
© Telenko 2023

Amended Media Assay

■ The PDA media amended with *B. amyloliquefaciens* significantly reduced the radial mycelial growth of *S. sclerotiorum*.

Non-amended control

B. amyloliquefaciens

Treatment and rate/ha	Average radial growth(mm)
Non-amended control	85.0 a
B. amyloliquefaciens, 4.68 L	0.0 b
p-value	<0.0001

Conrad, A. M.[†], and Telenko, D. E. P. 2023. Efficacy of biocontrol agents *Coniothyrium minitans* and *Bacillus amyloliquefaciens* for controlling *Sclerotinia sclerotiorum* in Indiana soybean. PhytoFrontiers. doi.org/10.1094/PHYTOFR-07-22-0080-R

Soil Plate Assay

■ After being treated with *C. minitans*, the viability of the sclerotia of *S. sclerotiorum* was significantly reduced.

Treatment and rate/ha	Average radial growth (mm)
Non-treated control	83.78 a
C. minitans, 2.24 kg	38.18 b
p-value	<0.0001

Conrad, A. M.[†], and Telenko, D. E. P. 2023. Efficacy of biocontrol agents *Coniothyrium minitans* and *Bacillus amyloliquefaciens* for controlling *Sclerotinia sclerotiorum* in Indiana soybean. PhytoFrontiers. doi.org/10.1094/PHYTOFR-07-22-0080-R

Will other pesticides influence the activity of the biocontrols?

Soil Plate Assay - Herbicides

Conrad, A. M.[†], Johnson, W. G., Cruz, C. D., and Telenko, D. E. P. 2023. Integration of *Sclerotinia sclerotiorum* targeted biofungicides *Coniothyrium minitans* and *Bacillus amyloliquefaciens* into season-long soybean pest management practices in Indiana. PhytoFrontiers. doi/10.1094/PHYTOFR-08-22-0082-R.

© Telenko 2023

Soil Plate Assay - Herbicides

Conrad, A. M.[†], Johnson, W. G., Cruz, C. D., and Telenko, D. E. P. 2023. Integration of *Sclerotinia sclerotiorum* targeted biofungicides *Coniothyrium minitans* and *Bacillus amyloliquefaciens* into season-long soybean pest management practices in Indiana. PhytoFrontiers. doi/10.1094/PHYTOFR-08-22-0082-R.

© Telenko 2023

Soil Plate Assay - Fungicides

Conrad, A. M.[†], Johnson, W. G., Cruz, C. D., and Telenko, D. E. P. 2023. Integration of *Sclerotinia sclerotiorum* targeted biofungicides *Coniothyrium minitans* and *Bacillus amyloliquefaciens* into season-long soybean pest management practices in Indiana. PhytoFrontiers. doi/10.1094/PHYTOFR-08-22-0082-R.

© Telenko 2023

Materials and Methods

Controlled Environment Experiments

Spray booth: Herbicides and fungicides

Dip method: *B.* amyloliquefaciens

Pipet tip inoculation method

20°C 14 hrs light/10 hrs dark

Controlled Environment Experiments

Conrad, A. M.[†], Johnson, W. G., Cruz, C. D., and Telenko, D. E. P. 2023. Integration of *Sclerotinia sclerotiorum* targeted biofungicides *Coniothyrium minitans* and *Bacillus amyloliquefaciens* into season-long soybean pest management practices in Indiana. PhytoFrontiers. doi/10.1094/PHYTOFR-08-22-0082-R.

Controlled Environment Experiments

Conrad, A. M.[†], Johnson, W. G., Cruz, C. D., and Telenko, D. E. P. 2023. Integration of *Sclerotinia sclerotiorum* targeted biofungicides *Coniothyrium minitans* and *Bacillus amyloliquefaciens* into season-long soybean pest management practices in Indiana. PhytoFrontiers. doi/10.1094/PHYTOFR-08-22-0082-R.

Summary

- In the poison assay *C. minitans* was most sensitive to the preemergence herbicide flumioxazin and the synthetic fungicides boscalid and fluazinam.
- B. amyloliquefaciens was sensitive only to the synthetic fungicide fluazinam.
- In the soil plate assay the ability of *C. minitans* to degrade the sclerotia of *S. sclerotiorum* was reduced by flumioxazin, metribuzin, glyphosate, picoxystrobin, and boscalid.
- None of the pesticides tested decreased the efficacy of *B. amyloliquefaciens* in the controlled environment experiments.
- In the laboratory and growth chamber where the biofungicides can interact directly with the pathogen *B. amyloliquefaciens* and *C. minitans* are effective biocontrol agent of *S. sclerotiorum* in soybean.
- Antagonistic relationships do exist between *C. minitans* and *B. amyloliquefaciens* and certain preemergence herbicides, postemergence herbicides, and synthetic fungicides. Caution should be used when timing the application of either biofungicide.

Project: Identifying and Expanding Integrated Disease Management Resources

in Support of Organic and Transitional North Central Grain Farms

Advancing sustainable agriculture since 1988

Dr. Darcy Telenko, Purdue University

Dr. Damon Smith, University of Wisconsin-Madison

Dr. Erin Silva, University of Wisconsin-Madison

Ms. Camila Da Rocca, graduate student, Purdue University

Ms. Kelly Debbink, graduate student, University of Wisconsin-Madison

IDM for White Mold in Organic Soybean

IDM for White Mold in Organic Soybean, IN

SOY22-06

IDM for White Mold in Organic Soybean

SOY22-06

IDM for Tar Spot in Organic Soybean

Indiana: Wanatah, IN

Uniform Trials for Foliar Disease on Soybean

4 locations: Indiana, Kentucky, Iowa, Wisconsin

Uniform Trials for Foliar Disease on Soybean

4 locations: Indiana, Kentucky, Iowa, Wisconsin

Practices that Reduced White Mold Severity

- Reduced residue from previous year
- Roller-crimped rye shown to impact spore release in snap beans
- Using a moderate resistant varieties
- Fungicide application at flowering can increase protection
- Biological control Contans WG mycoparasite of sclerotia

Evaluation of biologicals in corn and soybean

Advancing sustainable agriculture since 1988

Trt	Treatment	Active ingredient	Rate/A at VT/R1
1	Nontreated control		
2	Headline Amp	pyraclostrobin (13.64%) + metconazole (5.14%)	10 fl oz
3	Serifel	Bacillus amyloliquefaciens strain MB1600	16 oz
4	Actinovate	Streptomyces lydicus WYEC 108	12 oz
5	Badge X2	copper oxychloride (23.8%) + copper hydroxide (21.5%)	1.8 lb in 20 gal/water
6	Oxidate 5.0	Hydrogen peroxide + peroxyacetic acid	128 fl oz in 100 gal/Water

IDM for Tar Spot in Organic Corn

Tar spot AUDPC, 2021

Hybrid: ALSEED O.84-95UP 3 July 2021 tar spot first detected in Indiana

IDM for Tar Spot in Organic Corn

Uniform Trials for Foliar Disease on Corn

5 locations: Indiana, Kentucky, Iowa, Wisconsin, Ontario CA

Uniform Trials for Foliar Disease on Corn

4 locations: Indiana, Kentucky, Iowa, Wisconsin

IDM for Fusarium Head Blight (FHB) in Organic Wheat

Cultivars

Kaskaskia

Harpoon

Trade name, Company

Prosaro 421 SC – Bayer Crop Science, St. Loius, Mo

Champion 50 WP – Nufarm, Morrisville, NC

Pacesetter WS – Marrone Bio Innovations, Davis, CA

Sonata – Wilbur-Ellis Agribusiness, San Francisco, CA

Actinovate AG – Novozymes

Active ingredient Rate/A

Prothioconazole + Tebuconazole 8.2 fl oz

Reynoutria sachalinensis 12% 13.0 fl oz

Copper Hydroxide

Bacillus pumilus QST 2808 1.0 qt

Streptomyces lydicus WYEC 108 12.0 fl oz

1.5 lb

Indiana 2021 and 2022

Advancing sustainable agriculture since 1988

p-value trt*var: 0.8965p-value var: 0.3593p-value trt: 0.0297

Indiana 2021 and 2022

Advancing sustainable agriculture since 1988

p-value trt*var: 0.2354p-value var: 0.9430p-value trt: 0.3257

p-value trt*var: 0.4331p-value var: 0.1641p-value trt: 0.9201

Tools to Assist with Disease Management Decisions

Scab smart website https://scabsmart.org/ and Fusarium risk tool https://www.wheatscab.psu.edu/

- Sporecaster App https://ipcm.wisc.edu/apps/sporecaster/
- Tarspotter App https://ipcm.wisc.edu/apps/tarspotter/

- New Publication at CPN!
 - Biopesticides for Crop Disease Management
 - doi.org/10.31274/cpn-20230919-0

Key for success

- Not curative!
 - Need to be used in preventative manner
- Integration!
 - There are no silver bullets
 - Biopesticides need to be integrated with other pest management strategies
- Identification of Goal for use correct pathogen, etc.
 - Proper identification is key to controlling any pest

Final Thoughts

Goal of Sustainable Disease Management

- Use host resistance when available
- Understand disease cycle
 - Environmental conditions that favor disease
 - When does it need to be in place?
 - Where?
 - Importance of coverage cautionary note on new tech
- Leave non-treated test strips when trying something new
- Resistance management
 - Rotation of modes of action (MOA)
 - Full label rates

Crop Protection Network

QUESTIONS?

Darcy Telenko, Ph.D.

Associate Professor & Extension Field Crops Pathologist

Phone: (765) 496-5168

Email: dtelenko@purdue.edu

Follow me on Twitter: @Dtelenko https://indianafieldcroppathology.com/

