A Consultant's Perspective on Efficiency Improvements with Precision Nutrient Management John Shanahan - Agronomist with PG Farms

- Paul & Deb Gangwish Owner
- Headquarters in Shelton, NE
- 11,000 acres of cropland
- Produce and harvest hybrid seed corn
- Hay and livestock production
- Trucking business Nebraska
 Twenty full-time employees

PG Farms

About Myself

Agronomist-PG Farms 2016 Agronomist-DuPont Pioneer 2010 - 2016
Research Agronomist-USDA-ARS & Univ. of Nebraska 1998 - 2010
Extension Specialist-Colorado State University 1982 - 1998

John Shanahan 402-525-8815 jshanahan002@gmail.com

Nitrogen Management Challenge

- Nitrogen (N) fertilizer management is among most uncertain aspects of modern corn production
- Because soil N varies dynamically in response to the interaction between soils and weather, optimal N rates for any year or location in a given field varies widely
- As a result, N is often inadvertently over- and underapplied, reducing profitability

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ Haber–Bosch process

Consumes 40% of energy budget for corn production

Nitrogen Cycle

 Key to improving N management may involve less reliance on <u>large preplant N applications at</u> <u>uniform rates</u> and greater dependence on <u>split</u> <u>applications of spatially variable N rates</u>

PG Farms Enterprise

South Fields

North Fields

- South Farm Soils:
 - Level to rolling terrain
 - pH: 6-8
 - <u>Silt loam soil types</u>
 - <u>O.M.: 1.5-2.5%</u>
 - <u>CEC: 15-20 meq/100g</u>

- North Farms Soils:
 - Level to rolling terrain
 - pH: 6-8
 - Sandy loam soil types
 - <u>O.M.: 0.5-1.5%</u>
 - <u>CEC: 5-15 meq/100g</u>

N Applicator: Exactrix W/ Precision Control

(24 rows, 15" intervals) Anhydrous ammonia

10 - 34 - 0

2016 NH3 Amonia: Application

03/11/2016

AVERAGE

143.74 lb/ac

AREA WORKED

TOTAL APPLIED

March

331.79 ac

AVG. SPEED

7.44 mi/h

AGRONOMIC DATA

Ammonium thiosulfate

V

Layer: As Applied Rate

www.exactrix.com

Planters- W/ Precision Fertilizer and Seed Control

Precision Irrigation Control

Water, Nitrogen and Pesticide Application

Manage for Spatial Variability

Combines-W/Precision Yield Mapping

Precision Apps Reviewed John Deere- Op Center Climate Apps

Irrigation

Satellite Imagery

AgLeader SMS Advanced

3231

Nitrogen Management Plan

South Farm

Applied N (260 lbs/acre)

North Farm

Applied N (230 lbs/acre)

3 applications - 30 lbs/acre @ V10, V14 & VT 6 applications - 30 lbs/acre @ V3, V5, V8, V14, VT, R1/R2

Goal - Maintain Season-Long Supply of N

Evaluating N Management Plan

100 lbs N/acre Preplant Applied Ammonia

Monitoring Vegetative Health Using Satellite Imagery from Farmshots

Imagery Sources

Rapid Eye:5-band multispectral image (blue, green, red, red edge, near-infrared)

Planet Labs in 2017

Remote Sensing Basics

Use of Remote Sensing Imagery for Improving Crop Management Decisions by Bob Gunzenhauser¹ and John Shanahan²

Summary

- Remote sensing is collecting reflected light information from objects like crop canopies using remote platforms such as satellites, aircraft or ground-based platforms.
- In a 2013 pilot program, DuPont Pioneer is providing remote sensing imagery services to growers through Pioneer[®] Field360[™] services.
 - In-season imagery from RapidEye is provided by Satshot, a national distributor.
 - This imagery can be displayed from a mobile device such as an iPad[®] or other tablet and can be used for directed field scouting.
- Images can be used to develop management zone-directed soil sampling schemes, validating hybrid tests or evaluating other agronomic practices on your farm.

Introduction

Remote sensing is defined as collecting information about objects (e.g., soil or crop surfaces) from remote platforms like satellites, aircraft or ground-based booms. This practice

Figure 1. Aerial color-infrared image depicting spatial variation in crop vigor for several fields. Images courtesy of Cornerstone Mapping (www.cornerstonemapping.com).

Remote Sensing Basics

BIONEER.

Wavelength (nm)

Identifying N Stress with Remote Sensing

NDVI Image-Rapid Eye-July 12th

Red Edge Image - Rapid Eye-July 12th

Photo taken on July 12, 2013, depicting nitrogen stress for 24-row strips receiving only 25 lbs/acre of preplant N (corn on right).

Season-long Monitoring of N stressR16 FieldNDVI – June 23NDVI – June 23

NDVI-July 12 Red Edge-July 12

Red Edge-July 31

High

Imagery from Harris Fields

Imagery collected across entire farm encouraged us to make all 6 of planned in season N applications, including at R2

Red Edge – July 12

Red Edge – July 31

Climate N Advisor Report: North and South Farms

Projected Mean Nitrogen Status at Black Layer: -1 lbs/acre (deficit) Weather-Dependent Range: -11 to 9 lbs/acre

Projected Mean Nitrogen Status at Black Layer: -8 lbs/acre (deficit) Weather-Dependent Range: -18 to 2 lbs/acre

Dashed lines are mineral or manure fertilizer application events. Dotted lines are fertigation application events.

July 21, 2016

"North Farm"

Average Yields: North vs. South

Average Yield vs. Applied N

Forecasted 2016 end-of-season irrigated corn yield

Weather - South Farm

Temperatures - High And Low

Weather - North Farm

Precipitation

Temperatures - High And Low

Yield Maps: North vs. South

Yield (Dry) (bu/ac) 275.00 - 400.00 255.00 - 275.00 235.00 - 255.00 215.00 - 235.00 195.00 - 215.00 175.00 - 195.00 0.00 - 175.00

Comparison of Ammonia Strips Using Fieldview Reporting Tool North Farm – R2 Field + Ammonia

- Ammonia

34.7 Acres	258 Average Yield (bu/ac)	18 Mo	.5% isture A	4.1 Average Speed (MPH)
Soil Types	Hybrids Elevation Soil Type	Acres	Avg Yield	Moisture
O'Neill fine s percent slop	andy loam, 0 to 2 bes	22.1	259	18.4
O'Neill Ioam percent slop	y fine sand, 0 to 2 bes	6.1	251	18.3
Jansen-Mea percent slop	din loams, 0 to 2 bes	5.9	261	18.7

Delete

O'Neill fine sandy loam, 0 to 2 percent slopes 3.5 264 18.8 Valentine loamy fine sand, gently rolling 0.3 255 18.8
Valentine loamy fine sand, 0.3 255 18.8
gently toning
Jansen-Meadin loams, 0 to 2 14.8 258 18.9

Yields for All Ammonia Strip Trials

Summary/Needs

- Imagery was helpful in scheduling N application, especially at north farm
 - However, more frequent image delivery is critical
 - Should possess red-edge band
- Precision Ag Apps were helpful in summarizing yield results from on-farm trials
 - But better integration between apps needed
- N recommendation tools show promise
 - But more proof of performance needed

Thanks You Questions?

32