Managing Phosphorus
4R
Crops and Environment

Tom Bruulsema, Phosphorus Program Director
The International Plant Nutrition Institute is supported by leading fertilizer manufacturers.

Formed in 2007 from the Potash & Phosphate Institute, its mission is to develop and promote science for responsible management of crop nutrition.
Outline

1. Sustainable Phosphorus
2. 4R
3. Effective Practices

http://phosphorus.ipni.net
The emerging discipline of phosphorus sustainability science

Phosphorus Sustainability Research Coordination Network

Summary: The Phosphorus Sustainability Research Coordination Network (P-RCN) was funded by the U.S. NSF to identify solutions for P sustainability by sparking an interdisciplinary synthesis of data, perspectives, and understanding about phosphorus. The P-RCN has over 50 academic participants and meets annually to engage stakeholders and coordinate and integrate P sustainability research.

Global Environmental Change

Volume 19, Issue 2, May 2009, Pages 292–305

Traditional Peoples and Climate Change

The story of phosphorus: Global food security and food for thought
Phosphorus sustainability initiatives inform policy and the public

Our Vision
We envision a food system that manages phosphorus more sustainably to provide abundant, nutritious food while protecting the health of rivers, lakes, and oceans.

August 16-20, 2016
Kunming, Yunnan, China

5th Sustainable Phosphorus Summit 2016 (SPS 2016)
The farm perspective focuses on the soil and the crop.
Phosphorus flows beyond the farm: China, 1960-2012

Xin Liu et al., 2016. PNAS 113(10):2609-2614.
Global P Cycle: Large amounts mined and accumulating in soils

4R Nutrient Stewardship: a sustainability system with METRICS.
Nutrient Stewardship Metrics for Sustainable Crop Nutrition

Enablers (process metrics)
- Extension & professionals
- Infrastructure
- Research & innovation
- Stakeholder engagement

Actions (adoption metrics)
- [Require regional definition of 4R]
- Cropland area under 4R (at various levels)
- Participation in programs
- Equity of adoption (gender, scale, etc.)

Outcomes (impact metrics)
1. Farmland productivity
2. Soil health
3. Nutrient use efficiency
4. Water quality
5. Air quality
6. Greenhouse gases
7. Food & nutrition security
8. Biodiversity
9. Economic value
Nutrient stewardship are influenced by crop and pest management, and by soil and water conservation practices in the context of changing weather and climate.
Fieldprint® Calculator Sustainability Metrics

- Metrics that matter, usable at farm scale, linked to management with robust science
- Biodiversity, Energy Use, Greenhouse Gas Emissions, Irrigation Water Use, Land Use, Soil Carbon, Soil Conservation, **Water Quality**
- Current water quality metric is USDA NRCS WQI – qualitative
- Developing quantitative water quality outcome model to enable balancing among metrics
- Model requires definition of baseline and better practices
 - Nutrients (N & P), sediment, and pesticides
Comparing stakeholder perspectives

• Public
 – Water quality impact of agriculture is one concern among many
 – Expectation for evidence-based best practices

• Food industry
 – Desires clear simple metrics of sustainability impact, national in scope
 – Reflected in Fieldprint® Calculator

• Producers
 – Burden of reporting requirements of food supply chain
 – Can’t be environmentally responsible without profitability

• Scientists
 – Complex relationship between practices and P loss
 – Hesitant to quantify: small differences reverse outcomes
 – Inadequacy of current risk assessment tools – indexes & models
Crop yield contribution from phosphorus use is very substantial in the long term. One example: Long-term contribution of P to yield of irrigated corn in Kansas – 40-year average, 1961-2000 (Stewart et al., 2005, Agron. J. 97:1–6)
Short term crop response to P is much smaller

• Expected to be zero, or very small, on soils with adequate P levels
• When soil test P is below critical levels:
 ~15% (0-23%) for soy
 ~20% (0-30%) for corn
 ~40% (10-50%) for wheat, oats, alfalfa and clover in Illinois
High-yield crops take up large amounts of P. Most of it is removed with grain harvest.

Maize grain yield
12 t/ha
Illinois, 2010

2010 data from two sites and six hybrids
Research shows potential for altered P placement needs in high density high yield maize

Banding P fertilizer 10-15 cm deep

Yield, t/ha

11.7 12.0 13.0

none 15cm beside under

Dr. F.E. Below, University of Illinois
Phosphorus Issues

- Eutrophication
- Hypoxia
- Harmful algal blooms
- Excess levels in soil, stratification

- Finite resource, geopolitical distribution
- Declining quality of reserves
- Heavy metals, trace elements and cadmium
- Environmental impact of mining
Environmental Impact

- Eutrophication
- Hypoxia
- Harmful Algal Blooms

Photo credit: Carrie Vollmer-Sanders, The Nature Conservancy
Figure 4.3: Phosphorus (Total) National Condition Estimates

<table>
<thead>
<tr>
<th>Condition Category</th>
<th>2012 Percentage of Lakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Disturbed</td>
<td>40%</td>
</tr>
<tr>
<td>Moderately Disturbed</td>
<td>15%</td>
</tr>
<tr>
<td>Least Disturbed</td>
<td>45%</td>
</tr>
</tbody>
</table>
Western Lake Erie: dissolved P trends increasing since 2002

1. David Baker & Laura Johnson, National Center for Water Quality Research, Tiffin, OH
1. Crop removal increasing with yield.
Indiana P trending to deficit except for 2012

Indiana Cropland Phosphorus Balance

- Fertilizer
- Manure
- M + F
- Crop

P2O5, million tons

IPNI

NuGIS
Nutrient Use Geographic Information System
Soil Test Phosphorus

1. Soils below critical have increased to 31%.
2. Soils at optimum P: 28%.
3. Soils to draw down: 41%.

http://soiltest.ipni.net/
Fertilizer P is Soluble P

- MAP (11-52-0) has water solubility of 370 g/L
 - = 84 grams P per litre
 - = 84,000 mg P per litre

- Maumee river target for DRP = 0.047 mg P per litre

- Targets for Lake Erie:
 - Western Basin – 0.012 mg/L
 - Central Basin – 0.006 mg/L
 - Eastern Basin – 0.006 mg/L
Defining 4R phosphorus practices at the continental scale.
4R P Practices - Participating Scientists

1. Brian Arnall, Oklahoma State U
2. Doug Beegle, Penn State U
3. Don Flaten, U of Manitoba
4. Laura Good, U of Wisconsin
5. Kevin King, USDA-ARS, Columbus, OH
6. Quirine Ketterings, Cornell U
7. Josh McGrath, U of Kentucky
8. Antonio Mallarino, Iowa State U
9. Rao Mylavarapu, U of Florida
10. David Mulla, U of Minnesota
11. Nathan Nelson, Kansas State U
12. Keith Reid, Agriculture and Agri-Food Canada
13. Nathan Slaton, U of Arkansas
14. Charles Shapiro, U of Nebraska
15. Andrew Sharpley, U of Arkansas
16. Doug Smith, USDA-ARS, Temple, TX
17. Ivan O’Halloran, U of Guelph
18. Deanna Osmond, North Carolina State U
19. David Tarkalson, USDA-ARS, Kimberly, ID
Regions and Cropping Systems

1. Western Corn and Soybean
2. Eastern Cereals and Oilseeds
3. Wheat in the Great Plains
4. Irrigated Potatoes in the Northwest
5. Rice
6. Irrigated vegetables

4R Phosphorus Practices for Eastern Crops (including Indiana)

• Basic
 – Source: known or guaranteed analysis
 – Rate: recommended soil sampling and soil test interpretation, no more than 3 years crop removal
 – Timing: avoid frozen and snow-covered soils
 – Placement: subsurface band for no-till; on surface only when risk index is low

• Intermediate
 – Source: manure sampled for nutrients
 – Rate: as in basic, plus: P index used when recommended, no more than 2 years crop removal
 – Timing: close to or at planting, P Index
 – Placement: use starter where recommended, P Index
4R Phosphorus Practices for Eastern Crops (including Indiana)

• Advanced
 – Source: as in intermediate
 – Rate: as in intermediate, plus: **zone-specific** based on loss potential and crop response, no more than current crop’s needs, P Index
 – Timing: as in intermediate, plus: follow P Index
 – Placement: as in intermediate, plus: follow P Index

ADAPTIVE MANAGEMENT
 – Decisions are site-specific and adaptive to changing conditions. Not everything can be written down.
Ohio

P loss monitoring at edge of field
Right Rate

Spring (Mar through Jul)

Water Year (Oct through Sep)

- DRP load (kg/ha)
- TP load (kg/ha)

Mehlich III soil test P (mg/kg)

Kevin King, USDA-ARS, Columbus, Ohio
When is the right time?

Kevin King, USDA-ARS, Columbus, Ohio
Right Timing

Time of Application

- Greatest potential for surface and tile losses occurs with fall and winter application

- Applying P in spring or after wheat harvest seems to minimize surface and tile losses

Kevin King, USDA-ARS, Columbus, Ohio
1. Intense rainstorms following broadcast of P can generate high P concentrations in runoff even though losses are small relative to amount applied.
2. As the time intervals increase between surface broadcast P applications and runoff-producing rainfall events, DRP concentrations spike less.

David Baker and Laura Johnson, Heidelberg University
Broadcast? at the right time to avoid runoff
Right Place – in the soil, not on the soil

Soil type: Silt loam
Tile depth: 90 cm
Soil test P: 30 ppm Mehlich-3P
Tillage: No-till

2014 management
May 6th – Applied MAP @ 45 kg P/ha
May 8th – Tilled field TD1 (disc)
(TD2 remained no-till)

Compared P transport out of the tile drains
1. Broadcast P incorporated versus
2. Broadcast P not incorporated

Williams and King, USDA-ARS, Columbus, Ohio
Before P application & tillage (April 28th)

After P application & tillage (May 12th)

P incorporated P not incorporated

Incorporating reduced DRP loss from 0.27 to 0.04 lb P$_2$O$_5$ per acre
Soil test P distribution with depth in a long-term tillage experiment on a poorly drained Chalmers silty clay loam soil near West Lafayette, Indiana. Moldboard and chisel plots were plowed annually to a depth of 20 cm. Data from Gál (2005) and Vyn (2000). Fertilizer P applied broadcast.
Some growers fertilize all their crops in bands near the seed.
Fall Strip-till Banding

• Puts the P in the soil
• Keeps residue on the soil
• RTK GPS for precision planting

Greg LaBarge, Ohio State University Extension
Strip tillage with granular placement puts P in the right place – and controls erosion.
4R efficacy for reducing P loss, % reduction
- ranges found in field experiments across the USA and Canada

<table>
<thead>
<tr>
<th>Practice</th>
<th>Dissolved P</th>
<th>Particulate P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rate</td>
<td>60 to 88%</td>
<td>negligible</td>
</tr>
<tr>
<td>Time</td>
<td>41 to 42%</td>
<td>negligible</td>
</tr>
<tr>
<td>Place</td>
<td>20 to 98%</td>
<td>-60% to NS</td>
</tr>
<tr>
<td>Soil inversion</td>
<td>NS to 92%</td>
<td>-59% to NS</td>
</tr>
<tr>
<td>Conservation tillage</td>
<td>-308 to -40%</td>
<td>-33 to 96%</td>
</tr>
</tbody>
</table>

1. Wide range of efficacies demands more site-specific focus.
2. Trade-off between dissolved and particulate is important.
2.7M acres in OH-IN-MI extending to all of Ohio
Phosphate Rock Reserves and Quality

- Grade
- P_2O_5 content
- Trace elements – Cd, etc.
- Phosphogypsum – 5 tons per ton of phosphoric acid
Map of World P Resources
250 billion tonnes
in >100 countries

Sources: IFDC; USGS (2002, 2013)
“No matter how much phosphate rock exists, it is a non-renewable resource”
IFDC, 2010

<table>
<thead>
<tr>
<th>Country</th>
<th>2014-15 Production</th>
<th>Reserves</th>
<th>R/P ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morocco</td>
<td>30</td>
<td>50,000</td>
<td>1670</td>
</tr>
<tr>
<td>South Africa</td>
<td>2</td>
<td>1,500</td>
<td>750</td>
</tr>
<tr>
<td>Jordan</td>
<td>7</td>
<td>1,300</td>
<td>186</td>
</tr>
<tr>
<td>Russia</td>
<td>12</td>
<td>1,300</td>
<td>108</td>
</tr>
<tr>
<td>USA</td>
<td>26</td>
<td>1,100</td>
<td>42</td>
</tr>
<tr>
<td>China</td>
<td>100</td>
<td>3,700</td>
<td>37</td>
</tr>
<tr>
<td>World Total</td>
<td>220</td>
<td>69,000</td>
<td>314</td>
</tr>
</tbody>
</table>

Source: USGS, 2016

Cover of The Fertilizer Review Vol. XIII, March–April 1938, No. 2, illustrating the role of the undeveloped Western phosphate deposits in U.S. phosphorus supply considerations. **Depletion concerns about national PR reserves were eminent at the time but could not be substantiated.**

Global ore tonnage and grade:
- 1983: 513 Mt @ 14.3% P_2O_5
- 2013: 661 Mt @ 17.5% P_2O_5

Steiner et al., 2015, CRU report.
Summary

• With 4R, nutrient service providers can engage the sustainability movement to build social trust.

• Site-specific 4R phosphorus practices limit dissolved losses and need to be synergized with conservation practices controlling particulate losses.

• Opportunities to recycle phosphorus could reduce strain on finite natural resources, and can improve water quality where soil P is in surplus.