Michael Thompson Iowa State University Agronomy Department

Acknowledgments

- Jim Camberato and the Organizing Committee
- Agronomy Department, College of Agriculture and Life Sciences, Graduate College at Iowa State University
- USDA National Institute of Food and Agriculture
- IPNI International Plant Nutrition Institute
- David Laird
- Antonio Mallarino

Three of my favorite movies

Thompson – Iowa State University – December 2016

Profound Question:

What can we learn if we get *really small*?

A film by Ingmar Bergman Cries and whispers

al a tr

Harriet Andersson Kari Sylwan Ingrid Thulin Liv Ullman Phase Sven Nykvist Production Stimuk Filmindustri

A film by Ingmar Bergman Cries and whispers

Profound Questions

- What happens after death?
- How does one's life and death shape the next generation?
- How does guilt shape our lives?
- How can we forgive one another?
- How can we best love the people whom we love?

More profound questions

What is <u>reality</u>?

How do we derive <u>meaning</u> from reality?

What are stories?

How do the <u>stories</u> that we tell one another shape our <u>perception</u> of reality?

LIFE of K – The Cast of Characters

The Scale of Landscapes

-

-

Image by ML Thompson

The Scale of Pedons and Horizons

Image by ML Thompson

The Scale of the Rhizosphere

Intimate mixtures of clay and organic matter

Clayprotected OM

Intimate mixtures of clay and organic matter

<u>**Primary</u>** minerals are minerals that crystallize from the magma of volcanic eruptions.</u>

Those that contain K are

- Micas (e.g., biotite and muscovite)
- Feldspars (e.g., microcline and orthoclase)

Weathered Micas

LIFE of K: Birth

Primary minerals "weather" – break down – by several mechanisms.

- Chemical bonds are destabilized by acid attack.
- Al ions are complexed by organic anions and kept in solution, destabilizing the crystal.
- Fe²⁺ ions in micas are oxidized to Fe³⁺ ions, lowering the negative charge and releasing K⁺.

Weathering releases K to the soil solution.

Once released from primary minerals, where do K ions go – if not to plants?

Before answering that question, let's take a slight detour to recall the basic characteristics of <u>layer silicate</u> clay minerals.

Mica

- K-bearing minerals: **biotite** and **muscovite**
- Defined as *layer silicates* with nonexchangeable K

Vermiculite and Smectite

Vermiculite is a high-charge mineral, mainly derived from biotite.

Smectites may range in charge, but the higher the charge the more likely they are to "fix" K.

Thompson – ISU – Feb. 2016

Hydroxy–interlayered Vermiculite and Smectite

In **acidic** soils, *vermiculite* and *smectite* can be "pillared" with hydroxy-Al polymers. These materials are called <u>interlayered vermiculite and smectite</u>.

Where do K ions go?

- Potassium ions (**positively** charged) are attracted to the **negatively** charged surfaces of 2:1 clay minerals.
- In the case of low-charge *smectite*, the attraction is weak, but there is a lot of surface area to retain cations like potassium.
- In the case of *vermiculite*, the attraction is stronger, because the negative charge is higher or because the negative charge sites are closer to the surface of the tetrahedral sheet.
- The proportions of these minerals in the clay fractions of soils in the North Central region are highly variable. In the real world of soils, clay minerals commonly occur *"interstratified"* with one another, which means that a single clay layer may grade from mica to vermiculite to smectite.

LIFE of K – Young adulthood – A little fish in a big pond: Competition

Mica-vermiculite Smectite T = Tetrahedral sheet O = Octahedral sheet

COO represents carboxylate groups in soil organic matter.

The symbol (-) represents a negative structural charge, created by isomorphic substitution.

- Exchangeable K⁺ is held loosely near negatively charged mineral surfaces or negatively charged organic functional groups.
- Other cations, such as Ca²⁺, Mg²⁺, and NH₄⁺ compete dynamically with K for these negatively charged sites and surfaces.

Exchangeable potassium is

- K⁺ that can be flushed from the solid phase ulletwith NH_{a}^{+} ions (or other cations).
- K⁺ that is extractable using <u>ammonium</u> acetate, \bullet ammonium nitrate + ammonium fluoride (Mehlich-3), or <u>calcium</u> lactate.
- It is an empirical, lab-based definition.

LIFE of K – Taking a wrong turn

You can get in with the wrong crowd – get too close to certain minerals – and the next thing you know ...

LIFE of K – Taking a wrong turn

You can get in with the wrong crowd – get too close to certain minerals – and the next thing you know ...

Fixed K

Edge sites: Dioctahedral vermiculite *Redox sites*: Trioctahedral vermiculite and high-charge smectite *Interlayer sites*: Hydroxy-interlayered vermiculite and smectite

Boom! You are in the slammer.

Sites for K fixation

- Randomly interstratified micasmectite in the fine clay (<0.2 μm) dispersed from Typic
 Argiudoll in Iowa.
 - Clay mica particle dispersed from a fine, smectitic, Quaternary paleosol in Iowa.

 Note frayed, vermiculitic edges where monovalent cations such as K⁺ or NH₄⁺ might be fixed.

We have known about K fixation for decades.

• Vermiculite fixes K.

 Sites in wedges and at frayed edges of "micas" are selective for K.

(Hydroxy-Al (or Fe) "islands"

• Hydroxy-interlayered vermiculite fixes K.

LIFE of K – Unexpected grace

Fixed K

Edge sites: Dioctahedral vermiculite *Redox sites*: Trioctahedral vermiculite and high-charge smectite *Interlayer sites*: Hydroxy-interlayered vermiculite and smectite

The unexpected grace of fixed K's release is not easily predicted

- Low K⁺ concentration in solution due to plant uptake
- Increase in oxidation state of Fe as drainage conditions improve may lower the effective CEC and release K from fixed sites

Thompson – ISU – Dec. 2016

Fixed K

Edge sites: Di-vermiculite *Redox sites*: Tri-verm and HC smectite *Interlayer sites*: HIV and HIS

LIFE of K – *Few are selected* – Diffusion limits movement into roots

Anatomy of dicotyledenous plants. <u>http://cnx.org/contents/pPKTz_LG@1/211---Anatomy-of-dicotyledenou</u>

Potassium Transport Through a Cell Membrane Requires a Protein Channel

Protein channels and carrier proteins transport ions through cell membranes against a concentration gradient, from a region of low concentration to a region of high concentration.

K⁺ ion with water molecules clustered around it

http://www.acbrown.com/neuro/Lectures/Mmbr/NrMmbrMode.htm

http://virtual-museum.soils.wisc.edu/kcsa/index.html

Crystal structure of the KcsA potassium channel protein of the bacterium, *Streptomyces lividans*. The image at right was obtained by cloning the channel, synthesizing large quantities, crystalizing the protein, x-diffraction, and mathematical refinement to produce a crystal structure with a resolution of 3.4 Å.

LIFE of K – The Big Show – Biomass

LIFE of K – The Big Show – Biomass

- K plays vital roles in the lives of plants
- Activates enzymes
- Regulates water movement through stomata
- Maintains charge balance in cells
- Required for protein synthesis
- Improves disease resistance and fiber quality

LIFE of K – Then it's over – Death

A film by Ingmar Bergman Cries and whispers

What happens after death? How does one's life and death shape the next generation?

Death is a natural part of life.

Tissue decomposition releases K to the soil solution.

<u>1 mm</u>

LIFE of K – Reincarnation

LIFE of K – Then it's over – Death

LIFE of K – A beautiful mystery

LIFE of K – A beautiful mystery

There is a lot that we do not know about K.

- What is the <u>reality</u> of K forms in soil?
- What is <u>meaningful</u> in the life of K?
- How do the <u>stories</u> we tell one another about K shape our <u>perception</u> of reality?
- How do our stories about K shape the <u>reality of</u> <u>managing K in soils</u>?

LIFE of K – A beautiful mystery

There is a lot that we do not know about K.

- What is the <u>reality</u> of K forms in soil? (Do soil tests really measure "exchangeable" and "fixed" K?)
- What is <u>meaningful</u> in the life of K? (Is K fixation significant in a single growing season?)
- How do our <u>stories</u> about K shape our <u>perception</u> of reality? (Under what circumstances could K fixation be permanent?)
- How do our stories about K shape the <u>reality of</u> <u>managing K in soils</u>? (If soil tests don't access temporarily fixed K, will we over-fertilize the soil?)

What can be done to promote the bioavailability of K in soils?

- <u>Keeping the cation exchange capacity high</u> provides an abundance of low-energy exchange sites and surfaces where K⁺ ions can be held until plants start to draw on them.
- In most soils, the <u>cation exchange capacity can be increased</u> by increasing soil organic matter and by maintaining soil pH in the range of 6.5 – 7.0.
- <u>Some degree of potassium fixation probably occurs in most soils that</u> contain layer silicate minerals such as smectite, vermiculite, or hydroxy-interlayered forms of smectite and vermiculite.
- But soil management that promotes good drainage, increases soil organic matter, and maintains pH near neutral is likely to minimize the risks associated with "fixed," slowly available potassium.